scholarly journals Reduced Molecular Flavins as Single-Electron Reductants after Photo-Excitation

Author(s):  
Richard Foja ◽  
Alexandra Walter ◽  
Christian Jandl ◽  
Erling Thyrhaug ◽  
Jürgen Hauer ◽  
...  

Flavoenzymes mediate a multitude of chemical reactions and are catalytically active both in different oxidation states and in covalent adducts with reagents. The transfer of such reactivity to the organic laboratory using simplified molecular flavins is highly desirable and such applications in (photo-)oxidation reactions are already established. However, molecular flavins have not been used for the reduction of organic substrates yet, although this activity is known and well-studied for DNA photolyase enzymes. We report a catalytic method using reduced, molecular flavins as photo-reductants and γ-terpinene as sacrificial reductant. Additionally, we present our design for air-stable, reduced flavin catalysts, which is based on a conformational bias strategy and circumvents the otherwise rapid reduction of O2 from air. Using our catalytic strategy, we were able to replace super-stoichiometric amounts of the rare-earth reductant SmI2 in a 5-exo-trig cyclization of substituted barbituric acid derivatives. Such flavin-catalyzed reductions are anticipated to be of broad applicability and their straightforward synthesis indicates future use in stereo- as well as site-selective transformations.

2011 ◽  
Vol 89 (8) ◽  
pp. 939-947 ◽  
Author(s):  
Irena Mihailova ◽  
Dimitar Mehandjiev

Two calcium–cobalt silicates were synthesized in which cobalt occupies different structural positions. The crystal phases belong to two main structural silicate types. In the Co-åkermanite structure (Ca2CoSi2O7), cobalt cations take tetrahedral coordination toward oxygen atoms. In the Co-pyroxene structure of CaCoSi2O6, cobalt displays octahedral coordination. Ca2CoSi2O7 was prepared by solid-phase synthesis and CaCoSi2O6 was prepared by sol–gel method. The synthesis of the phases was confirmed by XRD, FTIR, and EPR data. On the basis of the XPS analysis, it can be concluded that Co2+ cations exist in the studied silicates. Thus, it is possible to study the catalytic activity of two silicate phases containing Co2+ cations in different coordinations: tetrahedral and octahedral. It was found that cobalt silicates with crystal structures corresponding to pyroxene and åkermanite possess catalytic activity in the reactions of complete oxidation of CO and toluene. Co-pyroxene exhibits higher catalytic activity than Co-åkermanite, but the higher cobalt content on the surface of Co-pyroxene should also be taken into account. Then, it turns out that catalytically active complexes with Со2+ ions in tetrahedral coordination are more efficient than those with such ions in octahedral coordination when equal concentrations of cobalt were used on the surface of the catalysts.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4484 ◽  
Author(s):  
Robin Weiss ◽  
Emmanuel Aubert ◽  
Paola Peluso ◽  
Sergio Cossu ◽  
Patrick Pale ◽  
...  

Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5′-dibromo-2,2′-dichloro-3-((perfluorophenyl)selanyl)-4,4′-bipyridine as organocatalyst. The latter is based on the use of two electron-withdrawing groups, a pentafluorophenyl ring and a tetrahalo-4,4′-bipyridine skeleton, as substituents at the selenium center. Atropisomery of the tetrahalo-4,4′-bipyridine motif provides a chiral environment to these new ChB donors. Their synthesis was achieved through either selective lithium exchange and trapping or a site-selective copper-mediated reaction. Pure enantiomers of the 3-selanyl-4,4′-bipyridine were obtained by high performance liquid chromatography enantioseparation on specific chiral stationary phase, and their absolute configuration was assigned by comparison of the measured and calculated electronic circular dichroism spectra. The capability of the selenium compound to participate in σ-hole-based interactions in solution was studied by 19F NMR. Even if no asymmetric induction has been observed so far, the new selenium motif proved to be catalytically active in the reduction of 2-phenylquinoline by Hantzsch ester.


2018 ◽  
Vol 16 (1) ◽  
pp. 763-789 ◽  
Author(s):  
Nicola A. Dare ◽  
Timothy J. Egan

AbstractEncapsulated metalloporphyrins have been widely studied for their use as efficient heterogeneous catalysts, inspired by the known catalytic activity of porphyrins in haemoproteins. The oxidation of organic substrates by haemoproteins is one of the well-known roles of these proteins, in which the haem (ferriprotoporphyrin IX = FePPIX) cofactor is the centre of reactivity. While these porphyrins are highly efficient catalysts in the protein environment, once removed, they quickly lose their reactivity. It is for this reason that they have garnered much interest in the field of heterogeneous catalysis of oxidation reactions. This review details current research in the field, focusing on the application of encapsulated haem, and other synthetic metalloporphyrins, applied to oxidation reactions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ivana Šagud ◽  
Irena Škorić

Photocatalytic processes are present in natural biochemical pathways as well as in the organic synthetic ones. This minireview will cover the field of photocatalysis that uses both the free-base and specially metallated porphyrins as catalysts. While free-base porphyrins are valuable sensitizers to output singlet oxygen, metalloporphyrins are even more adjustable as photocatalysts because of their coordination capacity, generating a wider range of oxidation reactions. They can be applied in autooxidation reactions, hydroxylations, or direct oxygen transfer producing epoxides. This review will mainly focus on how manganese and some iron porphyrins can be utilized for the functionalization of compounds that have a polycyclic skeleton in their structure. These kinds of compounds are notoriously taxing to obtain and difficult to further functionalize by conventional organic synthetic methods. We have focused on photocatalytic oxygenation reactions in mild conditions with the use of water-soluble porphyrins, as this has been proven to be a good tool for these transformations. In the photocatalytic reactions of some polycyclic heteroaromatic compounds, new polycyclic epoxides, enediones, ketones, alcohols, and/or hydroperoxides are yielded, depending on the catalyst applied. The application of anionic and cationic Mn(III) porphyrins under different reaction parameters results in different reaction pathways generating a vast number of photocatalytic products. Recently, Co and Ni complexes have been also photophysically investigated and confirmed as potential photocatalysts for the functionalization of organic substrates.


2020 ◽  
Vol 21 (16) ◽  
pp. 5734
Author(s):  
Joaquin Ramirez-Ramirez ◽  
Javier Martin-Diaz ◽  
Nina Pastor ◽  
Miguel Alcalde ◽  
Marcela Ayala

Unspecific peroxygenases (UPOs) are fungal heme-thiolate enzymes able to catalyze a wide range of oxidation reactions, such as peroxidase-like, catalase-like, haloperoxidase-like, and, most interestingly, cytochrome P450-like. One of the most outstanding properties of these enzymes is the ability to catalyze the oxidation a wide range of organic substrates (both aromatic and aliphatic) through cytochrome P450-like reactions (the so-called peroxygenase activity), which involves the insertion of an oxygen atom from hydrogen peroxide. To catalyze this reaction, the substrate must access a channel connecting the bulk solution to the heme group. The composition, shape, and flexibility of this channel surely modulate the catalytic ability of the enzymes in this family. In order to gain an understanding of the role of the residues comprising the channel, mutants derived from PaDa-I, a laboratory-evolved UPO variant from Agrocybe aegerita, were obtained. The two phenylalanine residues at the surface of the channel, which regulate the traffic towards the heme active site, were mutated by less bulky residues (alanine and leucine). The mutants were experimentally characterized, and computational studies (i.e., molecular dynamics (MD)) were performed. The results suggest that these residues are necessary to reduce the flexibility of the region and maintain the topography of the channel.


2006 ◽  
Vol 59 (4) ◽  
pp. 233 ◽  
Author(s):  
Paul V. Bernhardt

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein (e.g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate (e.g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis (equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect (mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen–antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.


2020 ◽  
Author(s):  
Margaret J. Hilton ◽  
Christopher Brackett ◽  
Brandon Q. Mercado ◽  
Brian S. J. Blagg ◽  
Scott Miller

Catalytic, selective modifications of natural products can be a fertile platform for unveiling not only new natural product analogs with altered biological activity, but also for revealing new reactivity and selectivity hierarchies for embedded functional groups in complex environments. Motivated by these intersecting aims, we report site and stereoselective oxidation reactions of geldanamycin facilitated by aspartyl-peptide catalysts. Through the isolation and characterization of four new geldanamycin oxides, we discovered a synergistic effect between lead peptide-based catalysts and geldanamycin, resulting in an unexpected reaction pathway. Curiously, it seems unlikely that our discoveries would not have been possible absent the outer sphere interactions intrinsic to both the catalyst and the natural product. The result is a set of new “meta” catalytic reactions that deliver both unknown and previously incompletely characterized geldanamycin analogs. Enabled by the catalytic, site-selective epoxidation of geldanamycin, biological assays were carried out to document the bioactivities of the new compounds.<div><br></div>


Sign in / Sign up

Export Citation Format

Share Document