scholarly journals From Electricity to Fuels: Descriptors for C1 Selectivity in Electrochemical CO2 Reduction

Author(s):  
Michael Tang ◽  
Hongjie Peng ◽  
Philomena Schlexer Lamoureux ◽  
Michal Bajdich ◽  
Frank Abild-Pedersen

Electrochemical reduction of carbon dioxide (CO<sub>2</sub>) over transition metals follows a complex reaction network. Even for products with a single carbon atom (C<sub>1</sub> products), two bifurcated pathways exist: initially between carboxyl (COOH*) and formate (HCOO*) intermediates and the COOH* intermediate is further bifurcated by pathways involving either formyl (CHO*) or COH*. In this study, we combine evidence from the experimental literature with a theoretical analysis of energetics to rationalize that not all steps in the reduction of CO<sub>2</sub> are electrochemical. This insight enables us to create a selectivity map for two-electron products (carbon monoxide (CO) and formate) on elemental metal surfaces using only the CO and OH binding energies as descriptors. In the further reduction of CO<sup>*</sup>, we find that CHO* is formed through a chemical step only whereas COH* follows from an electrochemical step. Notably on Cu(100), the COH pathway becomes dominant at an applied potential lower than −0.5V vs. RHE. For the elemental metals selective towards CO formation, the variation of the CO binding energy is sufficient to further subdivide the map into domains that predominantly form H<sub>2</sub>, CO, and ultimately more reduced products. We find Cu to be the only elemental metal capable of reducing CO<sub>2</sub> to products beyond 2e<sup>− </sup>via the proposed COH pathway and we identify atomic carbon as the key component leading to the production of methane. Our analysis also rationalizes experimentally observed differences in products between thermal and electrochemical reduction of CO<sub>2</sub> on Cu.

2019 ◽  
Author(s):  
Michael Tang ◽  
Hongjie Peng ◽  
Philomena Schlexer Lamoureux ◽  
Michal Bajdich ◽  
Frank Abild-Pedersen

Electrochemical reduction of carbon dioxide (CO<sub>2</sub>) over transition metals follows a complex reaction network. Even for products with a single carbon atom (C<sub>1</sub> products), two bifurcated pathways exist: initially between carboxyl (COOH*) and formate (HCOO*) intermediates and the COOH* intermediate is further bifurcated by pathways involving either formyl (CHO*) or COH*. In this study, we combine evidence from the experimental literature with a theoretical analysis of energetics to rationalize that not all steps in the reduction of CO<sub>2</sub> are electrochemical. This insight enables us to create a selectivity map for two-electron products (carbon monoxide (CO) and formate) on elemental metal surfaces using only the CO and OH binding energies as descriptors. In the further reduction of CO<sup>*</sup>, we find that CHO* is formed through a chemical step only whereas COH* follows from an electrochemical step. Notably on Cu(100), the COH pathway becomes dominant at an applied potential lower than −0.5V vs. RHE. For the elemental metals selective towards CO formation, the variation of the CO binding energy is sufficient to further subdivide the map into domains that predominantly form H<sub>2</sub>, CO, and ultimately more reduced products. We find Cu to be the only elemental metal capable of reducing CO<sub>2</sub> to products beyond 2e<sup>− </sup>via the proposed COH pathway and we identify atomic carbon as the key component leading to the production of methane. Our analysis also rationalizes experimentally observed differences in products between thermal and electrochemical reduction of CO<sub>2</sub> on Cu.


Author(s):  
Dui Ma ◽  
Ting Jin ◽  
Keyu Xie ◽  
Haitao Huang

Converting CO2 into value-added fuels or chemical feedstocks through electrochemical reduction is one of the several promising avenues to reduce atmospheric carbon dioxide levels and alleviate global warming. This approach...


2018 ◽  
Vol 9 (11) ◽  
pp. 2952-2960 ◽  
Author(s):  
Eva M. Nichols ◽  
Jeffrey S. Derrick ◽  
Sepand K. Nistanaki ◽  
Peter T. Smith ◽  
Christopher J. Chang

The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input.


Author(s):  
Tu Ngoc Nguyen ◽  
Jiaxun Guo ◽  
Ashwini Sachindran ◽  
Fengwang Li ◽  
Ali Seifitokaldani ◽  
...  

The electrochemical reduction of carbon dioxide (CO2) to chemicals is gaining great attention as a pragmatic solution for greenhouse gas mitigation and for the utilization of CO2 to produce useful...


Author(s):  
TOSHIYUKI ABE ◽  
HIROSHI IMAYA ◽  
TSUKASA YOSHIDA ◽  
SUMIO TOKITA ◽  
DERCK SCHLETTWEIN ◽  
...  

Electrochemical CO 2 reduction was studied by using a graphite electrode coated with cobalt octacyanophthalocyanine ( CoPc ( CN )8) and dipped in an aqueous phase. The most active and selective CO 2 reduction was achieved at −1.20 V (vs Ag / AgCl ) with the ratio of the produced CO / H 2 around 10 at pH 9.3. The electrocatalytic CO 2 reduction by CoPc ( CN )8 could be achieved at a more positive applied potential than non-substituted CoPc ( CoPc ), which can be ascribed to the relatively positive redox potential of CoPc ( CN )8. The catalytic mechanism of the CoPc ( CN )8 in a homogeneous system was investigated by an in situ potential-step chronoamperospectroscopy under argon and under CO 2 as well. In CoPc ( CN )8 the rate-determining step was an intermediate formation step, while in CoPc it was the second reduction of the complex.


2018 ◽  
Vol 11 (10) ◽  
pp. 2935-2944 ◽  
Author(s):  
Yanwei Lum ◽  
Joel W. Ager

A sequential pathway with CO as an intermediate species allows for control of oxygenate selectivity in electrochemical reduction of CO2.


2019 ◽  
Author(s):  
Yunchieh Lai ◽  
Ryan J. R. Jones ◽  
Yu Wang ◽  
Lan Zhou ◽  
Matthias Richter ◽  
...  

Electrochemical CO2 reduction to valuable products is a centerpiece of future energy technologies that relies on identificaiton of new catalysts. We present accelerated screening of Cu bimetallic alloys, revealing remarkable sensitivity to alloy concentration that indicates the segregation of alloying elements to critical sites for hydrocarbon formation.


2021 ◽  
Author(s):  
Wenbo Wang ◽  
Runqing Lu ◽  
Xin-Xin Xiao ◽  
Shanhe Gong ◽  
Daniel Kobina Sam ◽  
...  

Electrochemical carbon dioxide reduction reaction (eCO2RR) is a promising technology that uses electrical energy to catalytically reduce the greenhouse gas-CO2, which can convert CO2 into high value-added products such as...


2021 ◽  
Author(s):  
Doufeng Wu ◽  
Pengzuo Chen ◽  
Dongmei Feng ◽  
Jiajia Song ◽  
Yun Tong

In this work, the Sn species are deposited onto the surface of Bi2O3 material by a facile disproportionated reaction and the prepared catalyst shows superior electrocatalytic performance for CO2 reduction....


Sign in / Sign up

Export Citation Format

Share Document