Ligand Field-Actuated Non-Innocence of Acetylacetonate

Author(s):  
Morten Gotthold Vinum ◽  
Laura Voigt ◽  
Steen Hansen ◽  
Colby Bell ◽  
Kensha Marie Clark ◽  
...  

<p>The quest for simple ligands to participate in concerted base metal-ligand multiple-electron redox events is driven by perspectives of replacing noble metals in catalysis and for discovering novel chemical reactivity. Yet the vast majority of simple ligand systems displays electrochemical potentials impractical for catalytic cycles substantiating the importance of new strategies towards aligned metal–ligand orbital energy levels. We herein demonstrate the possibility to establish and tame the elusive <i>non-innocence</i> of the ubiquitous acetylacetonate (acac), that is the most commonly employed anionic, chelating ligand towards elements across the entire Periodic Table. By employing the ligand field in the high-spin Cr(II) as a thermodynamic switch, we were able to chemically tailor the occurrence of metal–ligand redox events. The very mechanism can be understood as a destabilization of the d<i><sub>z</sub></i>2 orbital relative to the <i>pi</i>* LUMO of acac, which proffers a generalizable strategy to synthetically engineer non-innocence with seemingly redox-inactive ligands. </p>

2020 ◽  
Author(s):  
Morten Gotthold Vinum ◽  
Laura Voigt ◽  
Steen Hansen ◽  
Colby Bell ◽  
Kensha Marie Clark ◽  
...  

<p>The quest for simple ligands to participate in concerted base metal-ligand multiple-electron redox events is driven by perspectives of replacing noble metals in catalysis and for discovering novel chemical reactivity. Yet the vast majority of simple ligand systems displays electrochemical potentials impractical for catalytic cycles substantiating the importance of new strategies towards aligned metal–ligand orbital energy levels. We herein demonstrate the possibility to establish and tame the elusive <i>non-innocence</i> of the ubiquitous acetylacetonate (acac), that is the most commonly employed anionic, chelating ligand towards elements across the entire Periodic Table. By employing the ligand field in the high-spin Cr(II) as a thermodynamic switch, we were able to chemically tailor the occurrence of metal–ligand redox events. The very mechanism can be understood as a destabilization of the d<i><sub>z</sub></i>2 orbital relative to the <i>pi</i>* LUMO of acac, which proffers a generalizable strategy to synthetically engineer non-innocence with seemingly redox-inactive ligands. </p>


2020 ◽  
Vol 49 (28) ◽  
pp. 9641-9650
Author(s):  
Robert J. Deeth

The ‘coordination voids’ above and below the molecular plane exert significant σ and π ligand field effects.


Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiming Wu ◽  
Jiahui Xu ◽  
Xian Qin ◽  
Jun Xu ◽  
Xiaogang Liu

AbstractControlling nonlinear optical signals electrically offers many opportunities for technological developments. Lanthanide-activated nanoparticles have recently emerged as leading platforms for nonlinear upconversion of infra-red excitation within nanometric volumes. However, manipulation of upconversion emission is restricted to varying percentages of component materials, nanocrystal structure, and optical pumping conditions. Here, we report temporal modulation of anti-Stokes luminescence by coupling upconversion nanoparticles with an electrochemically responsive molecule. By electrically tailoring orbital energy levels of the molecules anchored on nanoparticle surfaces, we demonstrate reversible control of molecular absorption, resulting in dynamic colour editing of anti-Stokes luminescence at single-particle resolution. Moreover, we show that a programmable logic gate array based on opto-electrochemical modulation can be constructed to convert information-encrypted electrical signals into visible patterns with millisecond photonic readout. These findings offer insights into precise control of anti-Stokes luminescence, while enabling a host of applications from low-threshold infrared logic switches to multichannel, high-fidelity photonic circuits.


1974 ◽  
Vol 29 (1) ◽  
pp. 31-41 ◽  
Author(s):  
E. König ◽  
S. Kremer

The complete ligand field -Coulomb repulsion -spin orbit interaction matrices have been derived for the d4 and d6 electron configurations within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were perform ed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C) and spin-orbit interaction (ζ). Correct energy diagrams are presentend which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of optical spectral data, to the detailed behavior at the crossover of ground terms, and to complete studies in magnetism are pointed out.


2013 ◽  
Vol 17 (05) ◽  
pp. 351-358 ◽  
Author(s):  
Mohammad Janghouri ◽  
Ezeddin Mohajerani ◽  
Mostafa M. Amini ◽  
Naser Safari

A method for obtaining red emission from an organic-light emitting diode has been developed by dissolving red and yellow dyes in a common solvent and thermally evaporating the mixture in a single furnace. Dichlorido-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex ( Q2SnCl2 , Q = 5,7-dichloro-8-hydroxyquinoline) has been synthesized for using as a fluorescent material in organic light-emitting diodes (OLEDs). The electronic states HOMO (Highest Occupied Molecular Orbital)/LUMO (Lowest Occupied Molecular Orbital) energy levels explored by means of cyclic voltammetry measurements. A device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/ Q2SnCl2/Al (180nm) was fabricated and its electroluminescence performance at various thicknesses of light emitting layer (LEL) of Q2SnCl2 is reported. By following this step, an optimal thickness for the doping effect was also identified and explained. Finally a device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/meso-tetraphenylporphyrin (TPP): Q2SnCl2 (75nm)/ Al (180nm) was fabricated and its electroluminescence performance at various concentrations of dye has been investigated. It is shown that this new method is promising candidate for fabrication of low cost OLEDs at more homogeneous layer.


1974 ◽  
Vol 29 (3) ◽  
pp. 419-428 ◽  
Author(s):  
E. König ◽  
R. Schnakig ◽  
S. Kremer

The complete ligand-field, Coulomb interelectronic repulsion, and spin-orbit interaction matrices have been derived for the d5 electron configuration within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were performed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C), and spin-orbit interaction (ζ). Correct energy diagrams are presented which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of electronic spectra, and to complete studies in magnetism are pointed out. The detailed behavior at the crossover of ground terms is considered


1967 ◽  
Vol 22 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Walter A. Yeranos ◽  
David A. Hasman

Using the recently proposed reciprocal mean for the semi-empirical evaluation of resonance integrals, as well as approximate SCF wave functions for Co3+, the one-electron molecular energy levels of Co (NH3) 3+, Co (NH3) 5Cl2+, and Co (NH3) 4Cl21+ have been redetermined within the WOLFSBERG–HELMHOLZ approximation. The outcome of the study fits remarkably well with the observed electronic transitions in the u.v. spectra of these complexes and prompts different band assignments than previously suggested.


Sign in / Sign up

Export Citation Format

Share Document