Identical Anomalous Raman Relaxation Exponent in a Family of Single Ion Magnets: Towards Reliable Raman Relaxation Determination?

Author(s):  
Gabriela Handzlik ◽  
Michał Magott ◽  
Mirosław Arczyński ◽  
Alena M. Sheveleva ◽  
Floriana Tuna ◽  
...  

Propeller-like lanthanide complexes with suitable chiral ligand scaffolds are highly desired as they combine chirality and magnetic bistability. However, the library of relevant chiral molecules is quite limited. Herein we present the preparation, structures, magnetic behavior as well as EPR studies of a series of propeller-shaped lanthanide Single Ion Magnets (SIMs). Coordination of the smallest helicene-type molecule 1,10-phenanthroline-N,N’-dioxide (phendo) to LnIII ions results in the formation of homoleptic complexes [LnIII(phendo)4](NO3)3∙xMeOH (Ln = Gd, Er, Yb) Gd, Er and Yb, where four phendos encircle the metal center equatorially in a four-bladed propeller fashion. The magnetization dynamics in these systems is studied by magnetic measurements and EPR spectroscopy for non-diluted as well as solid state dilutions of Er and Yb in a diamagnetic [YIII(phendo)4](NO3)3∙xMeOH (Y) matrix. Careful analysis of the slow magnetic relaxation in the diluted samples can be described by a combination of Raman and Orbach relaxation mechanisms. The most important finding concerns the identical power law τ ≈ T -3 describing the anomalous Raman relaxation for all three reported compounds diluted in the Y matrix. This identical power law strongly suggests that the exponent of the Raman relaxation process in the series of solid-state diluted isostructural compounds is practically independent of the metal ion (as long as the molar mass changes are negligible) and highlights a possible strategy towards a reliable Raman relaxation determination.<br>

2020 ◽  
Author(s):  
Gabriela Handzlik ◽  
Michał Magott ◽  
Mirosław Arczyński ◽  
Alena M. Sheveleva ◽  
Floriana Tuna ◽  
...  

Propeller-like lanthanide complexes with suitable chiral ligand scaffolds are highly desired as they combine chirality and magnetic bistability. However, the library of relevant chiral molecules is quite limited. Herein we present the preparation, structures, magnetic behavior as well as EPR studies of a series of propeller-shaped lanthanide Single Ion Magnets (SIMs). Coordination of the smallest helicene-type molecule 1,10-phenanthroline-N,N’-dioxide (phendo) to LnIII ions results in the formation of homoleptic complexes [LnIII(phendo)4](NO3)3∙xMeOH (Ln = Gd, Er, Yb) Gd, Er and Yb, where four phendos encircle the metal center equatorially in a four-bladed propeller fashion. The magnetization dynamics in these systems is studied by magnetic measurements and EPR spectroscopy for non-diluted as well as solid state dilutions of Er and Yb in a diamagnetic [YIII(phendo)4](NO3)3∙xMeOH (Y) matrix. Careful analysis of the slow magnetic relaxation in the diluted samples can be described by a combination of Raman and Orbach relaxation mechanisms. The most important finding concerns the identical power law τ ≈ T -3 describing the anomalous Raman relaxation for all three reported compounds diluted in the Y matrix. This identical power law strongly suggests that the exponent of the Raman relaxation process in the series of solid-state diluted isostructural compounds is practically independent of the metal ion (as long as the molar mass changes are negligible) and highlights a possible strategy towards a reliable Raman relaxation determination.<br>


2015 ◽  
Author(s):  
M. N. Giriya, C. L. Khobaragade, D. S. Bhowmick, K. G. Rew M. N. Giriya, C. L. Khobaragade, D. S. Bhowmick, K. G. Rew ◽  

2007 ◽  
Vol 22 (8) ◽  
pp. 2116-2124 ◽  
Author(s):  
Li Feng ◽  
Haiyan Guo ◽  
Zuo-Guang Ye

Single crystals of the perovskite solid solution (1 − x)Pb(Fe2/3W1/3)O3–xPbTiO3, with x = 0, 0.07, 0.27, and 0.75, have been synthesized by the high-temperature solution growth using PbO as flux and characterized by x-ray diffraction and dielectric and magnetic measurements. The crystal structure at room temperature changes from a pseudocubic to a tetragonal phase with the PbTiO3 (PT) content increasing to x ⩾ 0.27. As the amount of PT increases, the relaxor ferroelectric behavior of Pb(Fe2/3W1/3)O3 (PFW) is transformed toward a normal ferroelectric state with sharp and nondispersive peaks of dielectric permittivity at TC. Two types of magnetic orderings are observed on the temperature dependence of the magnetization in the crystals with x ⩽ 0.27. This behavior is explained based on the relationships among the magnetic ordering, perovskite structure, composition, and relaxor ferroelectric properties. Furthermore, the macroscopic magnetization of the system was measured under the application of a magnetic field, which demonstrates different magnetic behavior associated with the weakly ferromagnetic, antiferromagnetic, and paramagnetic ordering in the temperature range of 2 to 390 K. Interestingly, the low-temperature ferromagnetism is enhanced by the addition of ferroelectric PT up to x = 0.27.


2002 ◽  
Vol 68 (6) ◽  
pp. 3156-3158 ◽  
Author(s):  
Roni Cohen ◽  
Oded Yarden ◽  
Yitzhak Hadar

ABSTRACT The effect of Mn2+ amendment on peroxidase gene expression was studied during Pleurotus ostreatus growth on cotton stalks. Four peroxidase-encoding genes were expressed differentially and in a manner different from that observed in defined media. Mn2+ affects mnp3 expression even 2 h after its addition to the cultures, suggesting a direct effect of the metal ion on expression.


2018 ◽  
Vol 73 (11) ◽  
pp. 793-801
Author(s):  
Aleksej Jochim ◽  
Christian Näther

AbstractReaction of Mn(NCS)2with pyrazole leads to the formation of three compounds with the compositions Mn(NCS)2(pyrazole)4(1), [Mn(NCS)2]2(pyrazole)6(2) and Mn(NCS)2(pyrazole)2(3). Compound1, already reported in the literature, consists of discrete complexes, in which the Mn(II) cations are octahedrally coordinated by four pyrazole ligands and two terminally N-bonded thiocyanate anions. In compound2each of the two Mn(II) cations are coordinated octahedrally by three pyrazole ligands and one terminal as well as two bridging thiocyanate anions, which link the metal cations into dimers. In compound3also octahedrally coordinated Mn(II) cations are present but they are linked into chainsviacentrosymmetric pairs ofμ-1,3-bridging thiocyanate anions. Upon heating compound1loses the pyrazole co-ligands stepwise and is transformed into the chain compound3viathe dimer2that is formed as an intermediate. Magnetic measurements on compounds2and3reveal dominating antiferromagnetic interactions, as already observed for 1D Mn(NCS)2coordination compounds with pyridine based co-ligands.


2018 ◽  
Vol 4 (4) ◽  
pp. 51 ◽  
Author(s):  
Monotosh Mondal ◽  
Maharudra Chakraborty ◽  
Michael G. B. Drew ◽  
Ashutosh Ghosh

Three trinuclear Ni(II)-Na(I) complexes,[Ni2(L1)2NaCl3(H2O)]·H2O (1), [Ni2(L2)2NaCl3(H2O)] (2), and [Ni2(L3)2NaCl3(OC4H10)] (3) have been synthesized using three different NNO donor tridentate reduced Schiff base ligands, HL1= 2-[(3-methylamino-propylamino)-methyl]-phenol, HL2= 2-[(3-methylamino-propylamino)-methyl]-4-chloro-phenol, and HL3= 2-[(3-methylamino-propylamino)-methyl]-6-methoxy-phenol that had been structurally characterized. Among these complexes, 1 and 2 are isostructural in which dinuclearNi(II) units act as metalloligands to bind Na(I) ions via phenoxido and chlorido bridges. The Na(I) atom is five-coordinated, and the Ni(II) atom possesses hexacordinated distorted octahedral geometry. In contrast, in complex 3, two -OMe groups from the dinuclear Ni(II) unit also coordinate to Na(I) to make its geometry heptacordinated pentagonal bipyramidal. The magnetic measurements of complexes 1–3 indicate ferromagnetic interactions between dimeric Ni(II) units with J = 3.97 cm−1, 4.66 cm−1, and 5.50 cm−1for 1–3, respectively, as is expected from their low phenoxido bridging angles (89.32°, 89.39°, and 87.32° for 1–3, respectively). The J values have been calculated by broken symmetry DFT method and found to be in good agreement with the experimental values.


2003 ◽  
Vol 356 ◽  
pp. 203-209 ◽  
Author(s):  
Gianluca Ambrosi ◽  
Mauro Formica ◽  
Vieri Fusi ◽  
Luca Giorgi ◽  
Annalisa Guerri ◽  
...  

2010 ◽  
Vol 88 (8) ◽  
pp. 725-735 ◽  
Author(s):  
Adeeb Al-Sheikh Ali ◽  
Judy Cipot-Wechsler ◽  
Sarah M. Crawford ◽  
Omar Selim ◽  
Rhonda L. Stoddard ◽  
...  

The first series of alkali dipyrrinato complexes is reported, encompassing lithium, sodium, and potassium salts of meso-unsubstituted and meso-aryl-substituted derivatives. By varying the substituents at the meso position, the intermolecular distance between the two nitrogen atoms and thus the κ2-N,N-bidentate bite angle was altered, as confirmed by comparison of crystallographic structures of dipyrrin free-bases in the solid-state. The mode of bonding varies as the ionic radius of the metal ion increases: solid-state structures reveal lithium to be accommodated in the plane of the dipyrrinato unit, whilst sodium is accommodated out of plane. The reactivity of analogous lithium, sodium, and potassium dipyrrinato complexes increases as the ionic radius of the metal ion increases, in keeping with the concept that the complexes tend towards an increasingly ionic nature as the size of the alkali metal increases.


2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.


Sign in / Sign up

Export Citation Format

Share Document