scholarly journals An Affordable Option to Au Single Crystals Through Cathodic Corrosion of a Wire: Fabrication, Electrochemical Behavior, and Applications in Electrocatalysis and Spectroscopy

Author(s):  
Mohamed Elnagar ◽  
Johannes M. Hermann ◽  
Timo Jacob ◽  
Ludwig A. Kibler

Faceting and nanostructuring of polycrystalline gold electrodes by cathodic corrosion in concentrated potassium hydroxide electrolytes has been systematically studied at different electrode potentials. Current-potential curves for the restructured Au electrodes in 0.1 M H2SO4 show characteristic features of Au(111) facets in the double-layer and oxidation region. Thus, the modified Au electrodes adopt properties typically known for well-defined single crystal surfaces. Besides the preferential surface faceting, the electrochemically active surface area (EASA) is enhanced as a function of potential, concentration and time. Scanning electron micrographs show the formation of well-defined triangular pits and nanostructures with a specific orientation confirming the formation of (111)-facets. In this way, the behavior of single crystals is accompanied with the properties of nanoparticles which are of utmost interest in electrocatalysis and surface enhanced Raman spectroscopy (SERS). The electrocatalytic activity of the newly formed “Au(111)” surface from an Au wire has been tested towards the hydrogen evolution reaction (HER) and for the formic acid oxidation reaction (FAOR). The study of electrocatalytic reactions at these nanostructured electrodes allows to identify active centers, which are absent for extended single crystal surfaces. Adsorbed pyridine on the nanostructured Au electrodes directly shows SERS activity, while untreated polycrystalline Au is SERS-inactive. The use of cathodic corrosion of simple wires is a paradigm of SERS-applications in electrochemistry with clean Au electrodes that provide properties of Au(111) single crystals.

2020 ◽  
Author(s):  
Mohamed Elnagar ◽  
Johannes M. Hermann ◽  
Timo Jacob ◽  
Ludwig A. Kibler

Faceting and nanostructuring of polycrystalline gold electrodes by cathodic corrosion in concentrated potassium hydroxide electrolytes has been systematically studied at different electrode potentials. Current-potential curves for the restructured Au electrodes in 0.1 M H2SO4 show characteristic features of Au(111) facets in the double-layer and oxidation region. Thus, the modified Au electrodes adopt properties typically known for well-defined single crystal surfaces. Besides the preferential surface faceting, the electrochemically active surface area (EASA) is enhanced as a function of potential, concentration and time. Scanning electron micrographs show the formation of well-defined triangular pits and nanostructures with a specific orientation confirming the formation of (111)-facets. In this way, the behavior of single crystals is accompanied with the properties of nanoparticles which are of utmost interest in electrocatalysis and surface enhanced Raman spectroscopy (SERS). The electrocatalytic activity of the newly formed “Au(111)” surface from an Au wire has been tested towards the hydrogen evolution reaction (HER) and for the formic acid oxidation reaction (FAOR). The study of electrocatalytic reactions at these nanostructured electrodes allows to identify active centers, which are absent for extended single crystal surfaces. Adsorbed pyridine on the nanostructured Au electrodes directly shows SERS activity, while untreated polycrystalline Au is SERS-inactive. The use of cathodic corrosion of simple wires is a paradigm of SERS-applications in electrochemistry with clean Au electrodes that provide properties of Au(111) single crystals.


1968 ◽  
Vol 46 (8) ◽  
pp. 949-958 ◽  
Author(s):  
R. A. Armstrong

The adsorption of CO on two large single crystals of tungsten exposing (100) and (211) surfaces has been studied by measuring changes in the work function [Formula: see text] at 300 °K and above, where some CO remained adsorbed. The results for the two surfaces were quite different.CO adsorbed on the clean W(100) surface at room temperature as β-CO causing [Formula: see text] to increase by 0.48 V. As β adsorption saturated, α-CO adsorption began and caused [Formula: see text] to decrease. The major effect of heating was desorption.CO adsorbed on the clean W(211) surface with a sticking probability near unity and increased [Formula: see text] by 0.68 V. Heating the crystal to temperatures below 1100 °K produced large irreversible changes in [Formula: see text]. These irreversible changes are attributed to the formation and dissociation on the surface of complexes consisting of two CO molecules.


2017 ◽  
Vol 19 (45) ◽  
pp. 30339-30350 ◽  
Author(s):  
D. Wrana ◽  
C. Rodenbücher ◽  
M. Krawiec ◽  
B. R. Jany ◽  
J. Rysz ◽  
...  

We report on the systematic exploration of electronic and structural changes of Nb-doped rutile TiO2(110) single crystal surfaces due to the thermoreduction under ultra-high vacuum conditions (without sputtering), with comparison to undoped TiO2(110) crystals.


2021 ◽  
pp. 138947
Author(s):  
José M. Gisbert-González ◽  
María V. Oliver-Pardo ◽  
Francisco J. Sarabia ◽  
Víctor Climent ◽  
Juan M. Feliu ◽  
...  

1976 ◽  
Vol 9 (7) ◽  
pp. 248-256 ◽  
Author(s):  
Gabor A. Somorjai

Sign in / Sign up

Export Citation Format

Share Document