scholarly journals Molecular Docking of Olea europaea and Curcuma Longa Compounds as Potential Drug Agents for Targeting Main-Protease of SARS-nCoV2

Author(s):  
Rashid Saif ◽  
Muhammad Hassan Raza ◽  
Talha Rehman ◽  
Muhammad Osama Zafar ◽  
Saeeda Zia ◽  
...  

<p>One of the main reasons of rapidly growing cases of COVID-19 pandemic is the unavailability of approved therapeutic agents. Therefore, it is urgently required to find out the best drug/vaccine by all means. Aim of the current study is to test the anti-viral drug potential of many of the available olive and turmeric compounds that can be used as potential inhibitors against one of the target proteins of SARS-nCoV2 named Main protease (Mpro/3clpro). Molecular docking of thirty olive and turmeric compounds with target protein was performed using Molecular Operating Environment (MOE) software to determine the best ligand-protein interaction energies. The structural information of the viral target protein M pro/3CL pro and ligands were taken from PDB and PubChem database respectively. Out of the thirty drug agents, 6 ligands do not follow the Lipinski rule of drug likeliness by violating two or more rules while remaining 24 obey the rules and included for the downstream analysis. Ten ligands from olive and four from turmeric gave the best lowest binding energies, which are Neuzhenide, Rutin, Demethyloleoeuropein, Oleuropein, Luteolin-7-rutinoside, Ligstroside, Verbascoside, Luteolin-7-glucoside, Cosmosin, Curcumin, Tetrehydrocurcumin, Luteolin-4'-o-glucoside, Demethoxycurcumin and Bidemethoxycurcumin with docking scores of -10.91, -9.49, -9.48, -9.21, -9.18, -8.72, -8.51, -7.68, -7.67, -7.65, -7.42, -7.25, -7.02 and - 6.77 kcal/mol respectively. Our predictions suggest that these ligands have the potential inhibitory effects of M pro of SARS-nCoV2, so, these herbal plants would be helpful in harnessing COVID-19 infection as home remedy with no serious known side effects. Further, in-silico MD simulations and in-vivo experimental studies are needed to validate the inhibitory properties of these compounds against the current and other target proteins in SARS-nCoV2.<br></p>

2020 ◽  
Author(s):  
Rashid Saif ◽  
Muhammad Hassan Raza ◽  
Talha Rehman ◽  
Muhammad Osama Zafar ◽  
Saeeda Zia ◽  
...  

<p>One of the main reasons of rapidly growing cases of COVID-19 pandemic is the unavailability of approved therapeutic agents. Therefore, it is urgently required to find out the best drug/vaccine by all means. Aim of the current study is to test the anti-viral drug potential of many of the available olive and turmeric compounds that can be used as potential inhibitors against one of the target proteins of SARS-nCoV2 named Main protease (Mpro/3clpro). Molecular docking of thirty olive and turmeric compounds with target protein was performed using Molecular Operating Environment (MOE) software to determine the best ligand-protein interaction energies. The structural information of the viral target protein M pro/3CL pro and ligands were taken from PDB and PubChem database respectively. Out of the thirty drug agents, 6 ligands do not follow the Lipinski rule of drug likeliness by violating two or more rules while remaining 24 obey the rules and included for the downstream analysis. Ten ligands from olive and four from turmeric gave the best lowest binding energies, which are Neuzhenide, Rutin, Demethyloleoeuropein, Oleuropein, Luteolin-7-rutinoside, Ligstroside, Verbascoside, Luteolin-7-glucoside, Cosmosin, Curcumin, Tetrehydrocurcumin, Luteolin-4'-o-glucoside, Demethoxycurcumin and Bidemethoxycurcumin with docking scores of -10.91, -9.49, -9.48, -9.21, -9.18, -8.72, -8.51, -7.68, -7.67, -7.65, -7.42, -7.25, -7.02 and - 6.77 kcal/mol respectively. Our predictions suggest that these ligands have the potential inhibitory effects of M pro of SARS-nCoV2, so, these herbal plants would be helpful in harnessing COVID-19 infection as home remedy with no serious known side effects. Further, in-silico MD simulations and in-vivo experimental studies are needed to validate the inhibitory properties of these compounds against the current and other target proteins in SARS-nCoV2.<br></p>


2021 ◽  
Author(s):  
Rashid Saif ◽  
Muhammad Hassan Raza ◽  
Talha Rehman ◽  
Muhammad Osama Zafar ◽  
Saeeda Zia ◽  
...  

<p></p><p>One of the main reasons of rapidly growing cases of COVID-19 pandemic is the unavailability of approved therapeutic agents. Therefore, it is urgently required to find out the best drug by all means. Aim of the current study is to test the anti-viral drug potential of many of the available olive and turmeric compounds that can be used as potential inhibitors against one of the target proteins of SARS-nCoV2 named Main protease (Mpro/3CLpro). Molecular docking of thirty olive and turmeric compounds with target protein was performed using Molecular Operating Environment (MOE) software, out of these 19 ligands were selected for redocking using PyRx to validate MOE results and to determine the best ligand-protein interaction energies. Molecular dynamics simulation was performed on best 7 docked complexes by NAMD/VMD to determine the stability of the ligand-protein complex. Out of the thirty drug agents, 6 ligands do not follow the Lipinski rule of drug likeliness by violating two or more rules while remaining 24 obey the rules and included for the downstream analysis. We found that Demethyloleoeuropein, Oleuropein, Rutin, Neuzhenide, Luteolin-7-rutinoside, Curcumin and Tetrehydrocurcumin gave best docking score and form much stable complexes during simulation. Our predictions suggest that these ligands have the potential inhibitory effects on Mpro of SARS-nCoV2, so, these herbal plants would be helpful in harnessing COVID-19 infection as home remedy with no serious known side effects. Further, in-vivo experimental studies are needed to validate the inhibitory properties of these compounds against the current and other target proteins in SARS-nCoV2.<b></b></p><br><p></p>


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Nicola Barbarini ◽  
Luca Simonelli ◽  
Alberto Azzalin ◽  
Sergio Comincini ◽  
Riccardo Bellazzi

Protein interactions are crucial in most biological processes. Several in silico methods have been recently developed to predict them. This paper describes a bioinformatics method that combines sequence similarity and structural information to support experimental studies on protein interactions. Given a target protein, the approach selects the most likely interactors among the candidates revealed by experimental techniques, but not yet in vivo validated. The sequence and the structural information of the in vivo confirmed proteins and complexes are exploited to evaluate the candidate interactors. Finally, a score is calculated to suggest the most likely interactors of the target protein. As an example, we searched for GRB2 interactors. We ranked a set of 46 candidate interactors by the presented method. These candidates were then reduced to 21, through a score threshold chosen by means of a cross-validation strategy. Among them, the isoform 1 of MAPK14 was in silico confirmed as a GRB2 interactor. Finally, given a set of already confirmed interactors of GRB2, the accuracy and the precision of the approach were 75% and 86%, respectively. In conclusion, the proposed method can be conveniently exploited to select the proteins to be experimentally investigated within a set of potential interactors.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1011
Author(s):  
Muhammad Fayyaz ur Rehman ◽  
Shahzaib Akhter ◽  
Aima Iram Batool ◽  
Zeliha Selamoglu ◽  
Mustafa Sevindik ◽  
...  

The SARS CoV-2 pandemic has affected millions of people around the globe. Despite many efforts to find some effective medicines against SARS CoV-2, no established therapeutics are available yet. The use of phytochemicals as antiviral agents provides hope against the proliferation of SARS-CoV-2. Several natural compounds were analyzed by virtual screening against six SARS CoV-2 protein targets using molecular docking simulations in the present study. More than a hundred plant-derived secondary metabolites have been docked, including alkaloids, flavonoids, coumarins, and steroids. SARS CoV-2 protein targets include Main protease (MPro), Papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), Spike glycoprotein (S), Helicase (Nsp13), and E-Channel protein. Phytochemicals were evaluated by molecular docking, and MD simulations were performed using the YASARA structure using a modified genetic algorithm and AMBER03 force field. Binding energies and dissociation constants allowed the identification of potentially active compounds. Ligand-protein interactions provide an insight into the mechanism and potential of identified compounds. Glycyrrhizin and its metabolite 18-β-glycyrrhetinic acid have shown a strong binding affinity for MPro, helicase, RdRp, spike, and E-channel proteins, while a flavonoid Baicalin also strongly binds against PLpro and RdRp. The use of identified phytochemicals may help to speed up the drug development and provide natural protection against SARS-CoV-2.


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Ibrahim Ahmad Muhammad ◽  
Kanikar Muangchoo ◽  
Auwal Muhammad ◽  
Ya’u Sabo Ajingi ◽  
Ibrahim Yahaya Muhammad ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was found to be a severe threat to global public health in late 2019. Nevertheless, no approved medicines have been found to inhibit the virus effectively. Anti-malarial and antiviral medicines have been reported to target the SARS-CoV-2 virus. This paper chose eight natural eucalyptus compounds to study their binding interactions with the SARS-CoV-2 main protease (Mpro) to assess their potential for becoming herbal drugs for the new SARS-CoV-2 infection virus. In-silico methods such as molecular docking, molecular dynamics (MD) simulations, and Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) analysis were used to examine interactions at the atomistic level. The results of molecular docking indicate that Mpro has good binding energy for all compounds studied. Three docked compounds, α-gurjunene, aromadendrene, and allo-aromadendrene, with highest binding energies of −7.34 kcal/mol (−30.75 kJ/mol), −7.23 kcal/mol (−30.25 kJ/mol), and −7.17 kcal/mol (−29.99 kJ/mol) respectively, were simulated with GROningen MAchine for Chemical Simulations (GROMACS) to measure the molecular interactions between Mpro and inhibitors in detail. Our MD simulation results show that α-gurjunene has the strongest binding energy of −20.37 kcal/mol (−85.21 kJ/mol), followed by aromadendrene with −18.99 kcal/mol (−79.45 kJ/mol), and finally allo-aromadendrene with −17.91 kcal/mol (−74.95 kJ/mol). The findings indicate that eucalyptus may be used to inhibit the Mpro enzyme as a drug candidate. This is the first computational analysis that gives an insight into the potential role of structural flexibility during interactions with eucalyptus compounds. It also sheds light on the structural design of new herbal medicinal products against Mpro.


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Trina Ekawati Tallei ◽  
Fatimawali ◽  
Afriza Yelnetty ◽  
Rinaldi Idroes ◽  
Diah Kusumawaty ◽  
...  

The rapid spread of a novel coronavirus known as SARS-CoV-2 has compelled the entire world to seek ways to weaken this virus, prevent its spread and also eliminate it. However, no drug has been approved to treat COVID-19. Furthermore, the receptor-binding domain (RBD) on this viral spike protein, as well as several other important parts of this virus, have recently undergone mutations, resulting in new virus variants. While no treatment is currently available, a naturally derived molecule with known antiviral properties could be used as a potential treatment. Bromelain is an enzyme found in the fruit and stem of pineapples. This substance has been shown to have a broad antiviral activity. In this article, we analyse the ability of bromelain to counteract various variants of the SARS-CoV-2 by targeting bromelain binding on the side of this viral interaction with human angiotensin-converting enzyme 2 (hACE2) using molecular docking and molecular dynamics simulation approaches. We have succeeded in making three-dimensional configurations of various RBD variants using protein modelling. Bromelain exhibited good binding affinity toward various variants of RBDs and binds right at the binding site between RBDs and hACE2. This result is also presented in the modelling between Bromelain, RBD, and hACE2. The molecular dynamics (MD) simulations study revealed significant stability of the bromelain and RBD proteins separately up to 100 ns with an RMSD value of 2 Å. Furthermore, despite increases in RMSD and changes in Rog values of complexes, which are likely due to some destabilized interactions between bromelain and RBD proteins, two proteins in each complex remained bonded, and the site where the two proteins bind remained unchanged. This finding indicated that bromelain could have an inhibitory effect on different SARS-CoV-2 variants, paving the way for a new SARS-CoV-2 inhibitor drug. However, more in vitro and in vivo research on this potential mechanism of action is required.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3822 ◽  
Author(s):  
R.P. Vivek-Ananth ◽  
Abhijit Rana ◽  
Nithin Rajan ◽  
Himansu S. Biswal ◽  
Areejit Samal

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Author(s):  
SHAILENDRA SANJAY SURYAWANSHI ◽  
POOJA BHAVAKANA JAYANNACHE ◽  
RAJKUMAR SANJAY PATIL ◽  
PALLED MS ◽  
ALEGAON SG

Objectives: The objective of the study was to screen and assess the selected bioactive bioflavonoids in medicinal plants as potential coronaviruses (CoV) main protease (Mpro) inhibitors using molecular docking studies. Methods: We have investigated several bioflavonoids which include apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin. Nelfinavir and lopinavir were used as standard antiviral drugs for comparison. Mpro was docked with selected compounds using PyRx 0.8 and docking was analyzed by PyRx 0.8 and Biovia Discovery Studio 2019. Results: The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin were found to be −7.4, −8.3, −8.0, −7.8, −7.3, −7, −7.4, −7.6, −7.8, −6.9, and −9 kcal/mol, respectively. Conclusion: From the binding energy calculations, we can conclude that nelfinavir and lopinavir may represent potential treatment options and apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin found to possess the best inhibitors of CoV disease-19 main protease.


Sign in / Sign up

Export Citation Format

Share Document