scholarly journals Solvent-Dependent Stability of Highly Defective UiO-66 to Acids and Bases

Author(s):  
Daniele Cartagenova ◽  
Fabio A. Peixoto Esteves ◽  
Nathan T. Fischer ◽  
Jeroen A. van Bokhoven ◽  
Marco Ranocchiari

UiO-66 is one of the most chemically stable Metal-organic frameworks (MOFs) available. However, little is known about its stability in organic solvents. In this study, we synthesized a highly defective UiO-66 (HD-UiO-66) and explored how its textural properties change when exposed to weak and strong acids, both organic and inorganic in nature, and dissolved in different solvents, water, dichloromethane (DCM), and tetrahydrofuran (THF). Exposing defective UiO-66 to weak acids and bases, such as acetic acid and triethylamine, maintains its crystalline structure and porosity, irrespective of the solvent. Sulphuric acid decomposes HD-UiO-66 in organic solvents but not in water, trifluoroacetic acid decomposes the framework only in DCM. Tetramethylguanidine decomposes HD-UiO-66 in organic solvents but mantains some of the MOFs porosity and crystalline structure in water, whereas potassium carbonate damages the MOF to a greater extent in water than in organic solvents. Our results show that the acid/base properties of the solvent modulate the strength of acids and bases and its polarity determines the extent of their solvation, thus playing a crucial role in altering the MOF’s textural properties. This systematic investigation highlights the central role played by the solvent in tuning the stability of MOFs, which is relevant for liquid-phase applications in acidic and basic environments, such as catalysis and adsorption.

2021 ◽  
Author(s):  
Daniele Cartagenova ◽  
Fabio A. Peixoto Esteves ◽  
Nathan T. Fischer ◽  
Jeroen A. van Bokhoven ◽  
Marco Ranocchiari

UiO-66 is one of the most chemically stable Metal-organic frameworks (MOFs) available. However, little is known about its stability in organic solvents. In this study, we synthesized a highly defective UiO-66 (HD-UiO-66) and explored how its textural properties change when exposed to weak and strong acids, both organic and inorganic in nature, and dissolved in different solvents, water, dichloromethane (DCM), and tetrahydrofuran (THF). Exposing defective UiO-66 to weak acids and bases, such as acetic acid and triethylamine, maintains its crystalline structure and porosity, irrespective of the solvent. Sulphuric acid decomposes HD-UiO-66 in organic solvents but not in water, trifluoroacetic acid decomposes the framework only in DCM. Tetramethylguanidine decomposes HD-UiO-66 in organic solvents but mantains some of the MOFs porosity and crystalline structure in water, whereas potassium carbonate damages the MOF to a greater extent in water than in organic solvents. Our results show that the acid/base properties of the solvent modulate the strength of acids and bases and its polarity determines the extent of their solvation, thus playing a crucial role in altering the MOF’s textural properties. This systematic investigation highlights the central role played by the solvent in tuning the stability of MOFs, which is relevant for liquid-phase applications in acidic and basic environments, such as catalysis and adsorption.


2021 ◽  
Author(s):  
Daniele Cartagenova ◽  
Fabio A. Peixoto Esteves ◽  
Nathan T. Fischer ◽  
Jeroen A. van Bokhoven ◽  
Marco Ranocchiari

UiO-66 is one of the most chemically stable Metal-organic frameworks (MOFs) available. However, little is known about its stability in organic solvents. In this study, we synthesized a highly defective UiO-66 (HD-UiO-66) and explored how its textural properties change when exposed to weak and strong acids, both organic and inorganic in nature, and dissolved in different solvents, water, dichloromethane (DCM), and tetrahydrofuran (THF). Exposing defective UiO-66 to weak acids and bases, such as acetic acid and triethylamine, maintains its crystalline structure and porosity, irrespective of the solvent. Sulphuric acid decomposes HD-UiO-66 in organic solvents but not in water, trifluoroacetic acid decomposes the framework only in DCM. Tetramethylguanidine decomposes HD-UiO-66 in organic solvents but mantains some of the MOFs porosity and crystalline structure in water, whereas potassium carbonate damages the MOF to a greater extent in water than in organic solvents. Our results show that the acid/base properties of the solvent modulate the strength of acids and bases and its polarity determines the extent of their solvation, thus playing a crucial role in altering the MOF’s textural properties. This systematic investigation highlights the central role played by the solvent in tuning the stability of MOFs, which is relevant for liquid-phase applications in acidic and basic environments, such as catalysis and adsorption.


Author(s):  
Daniele Cartagenova ◽  
Fabio André Peixoto Esteves ◽  
Nathan Teilo Fischer ◽  
Jeroen van Bokhoven ◽  
Marco Ranocchiari

UiO-66 is one of the most chemically stable metal-organic frameworks (MOFs) available. However, little is known about its stability in organic solvents. In this study, we synthesized a highly defective...


Author(s):  
Liangjie Wang ◽  
Juan Li ◽  
Luyao Cheng ◽  
Yonghui Song ◽  
Ping Zeng ◽  
...  

Lewis bases (L-bases) in wastewater, such as F- and PO43-, are destructive to the stability of MOFs which have attracted increasing attentions in wastewater treatment field as adsorbents and catalysts....


2019 ◽  
Author(s):  
Hatem M. Titi ◽  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Cristina Mottillo ◽  
Ghada Ayoub ◽  
...  

Systematic investigation of combustion energies for popular metal-organic frameworks (MOFs) reveals energy content comparable to conventional energetic materials and can be further modified and dine-tuned by polymorphism and isostructural ligand replacement to yield materials with energy densities comparable to Diesel or kerosene.<br>


2021 ◽  
Author(s):  
Xiao-Ning Wang ◽  
Yu-Meng Zhao ◽  
Jialuo Li ◽  
Jiandong Pang ◽  
Qiang Wang ◽  
...  

The field of Metal-Organic Frameworks (MOFs)-based biomimetic catalyst has achieved great progresses, but is still in its infancy stage. The systematic investigation on the tailored construction of MOF-based biomimetic catalysts...


2016 ◽  
Vol 52 (10) ◽  
pp. 2133-2136 ◽  
Author(s):  
Krunoslav Užarević ◽  
Timothy C. Wang ◽  
Su-Young Moon ◽  
Athena M. Fidelli ◽  
Joseph T. Hupp ◽  
...  

Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH2 accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.


2010 ◽  
Vol 46 (33) ◽  
pp. 6120 ◽  
Author(s):  
Tianjiao Wu ◽  
Lingjuan Shen ◽  
Matthew Luebbers ◽  
Chunhua Hu ◽  
Qingmei Chen ◽  
...  

2018 ◽  
Vol 20 (13) ◽  
pp. 3081-3091 ◽  
Author(s):  
Sergio Rojas-Buzo ◽  
Pilar García-García ◽  
Avelino Corma

Hafnium-based metal–organic frameworks are promising catalysts for upgrading biomass derivatives via an aldol condensation reaction.


2019 ◽  
Vol 58 (23) ◽  
pp. 15909-15916 ◽  
Author(s):  
Chen Dong ◽  
Jinquan Bai ◽  
Xiu-Liang Lv ◽  
Wei Wu ◽  
Jie Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document