scholarly journals Surface NMR Using Quantum Sensors in Diamond

Author(s):  
Kristina Liu ◽  
Alex Henning ◽  
Markus W. Heindl ◽  
Robin Allert ◽  
Johannes D. Bartl ◽  
...  

Characterization of the molecular properties of surfaces under ambient or chemically reactive conditions isa fundamental scientific challenge. Moreover, many traditional analytical techniques used for probing surfaces often lack dynamic or molecular selectivity, which limits their applicability for mechanistic and kinetic studies under realistic chemical conditions. Nuclear magnetic resonance spectroscopy (NMR) is a widely used technique and would be ideal for probing interfaces due to the molecular information it provides noninvasively. However, it lacks the sensitivity to probe the small number of spins at surfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect nuclear magnetic resonance signals fromchemically modified aluminum oxide surfaces, prepared with atomic layer deposition (ALD). With the surfaceNV-NMR technique, we are able to monitor in real-time the formation kinetics of a self assembled monolayer (SAM) based on phosphonate anchoring chemistry to the surface. This demonstrates the capability of quan-tum sensors as a new surface-sensitive tool with sub-monolayer sensitivity for in-situ NMR analysis with theadditional advantage of a strongly reduced technical complexity.

2021 ◽  
Author(s):  
Kristina Liu ◽  
Alex Henning ◽  
Markus W. Heindl ◽  
Robin Allert ◽  
Johannes D. Bartl ◽  
...  

Characterization of the molecular properties of surfaces under ambient or chemically reactive conditions isa fundamental scientific challenge. Moreover, many traditional analytical techniques used for probing surfaces often lack dynamic or molecular selectivity, which limits their applicability for mechanistic and kinetic studies under realistic chemical conditions. Nuclear magnetic resonance spectroscopy (NMR) is a widely used technique and would be ideal for probing interfaces due to the molecular information it provides noninvasively. However, it lacks the sensitivity to probe the small number of spins at surfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect nuclear magnetic resonance signals fromchemically modified aluminum oxide surfaces, prepared with atomic layer deposition (ALD). With the surfaceNV-NMR technique, we are able to monitor in real-time the formation kinetics of a self assembled monolayer (SAM) based on phosphonate anchoring chemistry to the surface. This demonstrates the capability of quan-tum sensors as a new surface-sensitive tool with sub-monolayer sensitivity for in-situ NMR analysis with theadditional advantage of a strongly reduced technical complexity.


2019 ◽  
Vol 13 (01) ◽  
pp. 124-128 ◽  
Author(s):  
Komal Zia ◽  
Talal Siddiqui ◽  
Saqib Ali ◽  
Imran Farooq ◽  
Muhammad Sohail Zafar ◽  
...  

AbstractNuclear magnetic resonance (NMR) spectroscopy is one of the most significant analytical techniques that has been developed in the past few decades. A broad range of biological and nonbiological applications ranging from an individual cell to organs and tissues has been investigated through NMR. Various aspects of this technique are still under research, and many functions of the NMR are still pending a better understanding and acknowledgment. Therefore, this review is aimed at providing a general overview of the main principles, types of this technique, and the advantages and disadvantages of NMR spectroscopy. In addition, an insight into the current uses of NMR in the field of medicine and dentistry and ongoing developments of NMR spectroscopy for future applications has been discussed.


Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 561-563 ◽  
Author(s):  
T. Staudacher ◽  
F. Shi ◽  
S. Pezzagna ◽  
J. Meijer ◽  
J. Du ◽  
...  

Application of nuclear magnetic resonance (NMR) spectroscopy to nanoscale samples has remained an elusive goal, achieved only with great experimental effort at subkelvin temperatures. We demonstrated detection of NMR signals from a (5-nanometer)3 voxel of various fluid and solid organic samples under ambient conditions. We used an atomic-size magnetic field sensor, a single nitrogen-vacancy defect center, embedded ~7 nanometers under the surface of a bulk diamond to record NMR spectra of various samples placed on the diamond surface. Its detection volume consisted of only 104 nuclear spins with a net magnetization of only 102 statistically polarized spins.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xi Kong ◽  
Leixin Zhou ◽  
Zhijie Li ◽  
Zhiping Yang ◽  
Bensheng Qiu ◽  
...  

Abstract Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw7895 ◽  
Author(s):  
Janis Smits ◽  
Joshua T. Damron ◽  
Pauli Kehayias ◽  
Andrew F. McDowell ◽  
Nazanin Mosavian ◽  
...  

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.


Sign in / Sign up

Export Citation Format

Share Document