Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume

Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 561-563 ◽  
Author(s):  
T. Staudacher ◽  
F. Shi ◽  
S. Pezzagna ◽  
J. Meijer ◽  
J. Du ◽  
...  

Application of nuclear magnetic resonance (NMR) spectroscopy to nanoscale samples has remained an elusive goal, achieved only with great experimental effort at subkelvin temperatures. We demonstrated detection of NMR signals from a (5-nanometer)3 voxel of various fluid and solid organic samples under ambient conditions. We used an atomic-size magnetic field sensor, a single nitrogen-vacancy defect center, embedded ~7 nanometers under the surface of a bulk diamond to record NMR spectra of various samples placed on the diamond surface. Its detection volume consisted of only 104 nuclear spins with a net magnetization of only 102 statistically polarized spins.

2021 ◽  
Author(s):  
Kristina Liu ◽  
Alex Henning ◽  
Markus W. Heindl ◽  
Robin Allert ◽  
Johannes D. Bartl ◽  
...  

Characterization of the molecular properties of surfaces under ambient or chemically reactive conditions isa fundamental scientific challenge. Moreover, many traditional analytical techniques used for probing surfaces often lack dynamic or molecular selectivity, which limits their applicability for mechanistic and kinetic studies under realistic chemical conditions. Nuclear magnetic resonance spectroscopy (NMR) is a widely used technique and would be ideal for probing interfaces due to the molecular information it provides noninvasively. However, it lacks the sensitivity to probe the small number of spins at surfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect nuclear magnetic resonance signals fromchemically modified aluminum oxide surfaces, prepared with atomic layer deposition (ALD). With the surfaceNV-NMR technique, we are able to monitor in real-time the formation kinetics of a self assembled monolayer (SAM) based on phosphonate anchoring chemistry to the surface. This demonstrates the capability of quan-tum sensors as a new surface-sensitive tool with sub-monolayer sensitivity for in-situ NMR analysis with theadditional advantage of a strongly reduced technical complexity.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xi Kong ◽  
Leixin Zhou ◽  
Zhijie Li ◽  
Zhiping Yang ◽  
Bensheng Qiu ◽  
...  

Abstract Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.


2021 ◽  
Author(s):  
Kristina Liu ◽  
Alex Henning ◽  
Markus W. Heindl ◽  
Robin Allert ◽  
Johannes D. Bartl ◽  
...  

Characterization of the molecular properties of surfaces under ambient or chemically reactive conditions isa fundamental scientific challenge. Moreover, many traditional analytical techniques used for probing surfaces often lack dynamic or molecular selectivity, which limits their applicability for mechanistic and kinetic studies under realistic chemical conditions. Nuclear magnetic resonance spectroscopy (NMR) is a widely used technique and would be ideal for probing interfaces due to the molecular information it provides noninvasively. However, it lacks the sensitivity to probe the small number of spins at surfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect nuclear magnetic resonance signals fromchemically modified aluminum oxide surfaces, prepared with atomic layer deposition (ALD). With the surfaceNV-NMR technique, we are able to monitor in real-time the formation kinetics of a self assembled monolayer (SAM) based on phosphonate anchoring chemistry to the surface. This demonstrates the capability of quan-tum sensors as a new surface-sensitive tool with sub-monolayer sensitivity for in-situ NMR analysis with theadditional advantage of a strongly reduced technical complexity.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw7895 ◽  
Author(s):  
Janis Smits ◽  
Joshua T. Damron ◽  
Pauli Kehayias ◽  
Andrew F. McDowell ◽  
Nazanin Mosavian ◽  
...  

Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S160-S160
Author(s):  
S Notararigo ◽  
M Martin-Pastor ◽  
J E Dominguez Munoz ◽  
M Barreiro-de Acosta

Abstract Background The deregulation of immune system cell response implies loss of T-cell apoptosis, high rate of proinflammatory cytokines production and subsequent exacerbate activation of TNF-α pathway. The use of biologic antibody decrease inflammation rate and symptoms, but it remains unclear if it has a direct effect on the pathways activation/inactivation on peripheral blood mononuclear cells (PBMCs). The aim of this study is evaluate the role of nuclear magnetic resonance spectroscopy (NMR) applied to the metabolomic study of serum samples isolated from fresh blood from inflammatory bowel disease (IBD) patients under IFX treatment to understand the activated/inactivated pathways of PBMCs. Methods A case–control study was performed. Inclusion criteria were IBD patients under IFX treatment. Blood samples were obtained in Crohn’s disease (CD) and ulcerative colitis (UC) patients before IFX and in healthy controls (CTRL). CD patients were divided into subgroups according to the gut affected, in Ileocolic (IC), ileum and colon. NMR samples of the serum were collected and measured according to Standard Operation Procedures. Three types of NMR spectra were measured for each serum sample (1Hnoepresat, 1Hcpmgpresat and 1HDfilterpresat). The signal in each NMR spectrum was integrated in a series of equidistant little portion of the spectrum called buckets of a constant width of 0.04 ppm, covering the complete 1H NMR spectral window from −5 to 14 ppm. Buckets in regions depleted from signal at the two extremes of the spectrum were discarded as well as those in the proximity of the water peak at ca. 4.7 ppm which was affected by the presaturation. The vectors corresponding to a number of samples of two or more groups can be rapidly analysed using Multivariant Statistical Analysis methods. Results Twenty-two IBD patients (12 CD and nine UC) were included, 10 CTRL were also included. The metabolomic analyses of the NMR spectra of the serum of the different patients and control groups by the fingerprinting and targeting profiling strategies provided OPLS-DA statistical models (Figure 1) that permitted the successful classification of certain groups of samples which are summarised in Table 1. Conclusion The results of this pilot NMR metabolomic study of serum samples of IBD found a series of spectral fingerprints that are able to discriminate between groups of patients CTRL and CD, which underlines its potential use for the diagnosis of the disease.


Sign in / Sign up

Export Citation Format

Share Document