scholarly journals Influence of Iron Sulfide Nanoparticle Sizes in Solid-State Batteries

Author(s):  
Dewald George ◽  
Zainab Liaqat ◽  
Martin Alexander Lange ◽  
Wolfgang Tremel ◽  
Wolfgang Zeier

<p>Given the inherent performance limitations of intercalation-based lithium-ion batteries, solid-state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS<sub>2</sub>) a promising cathode active material. In this work, FeS<sub>2</sub> nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 8 and 31 nm were synthesized. The electrochemical performance was evaluated in solid-state cells with a Li‑argyrodite solid electrolyte. While the reduction of FeS<sub>2</sub> was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS<sub>2</sub> utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS<sub>2</sub> particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid-state batteries.</p>

2021 ◽  
Author(s):  
Dewald George ◽  
Zainab Liaqat ◽  
Martin Alexander Lange ◽  
Wolfgang Tremel ◽  
Wolfgang Zeier

<p>Given the inherent performance limitations of intercalation-based lithium-ion batteries, solid-state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS<sub>2</sub>) a promising cathode active material. In this work, FeS<sub>2</sub> nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 8 and 31 nm were synthesized. The electrochemical performance was evaluated in solid-state cells with a Li‑argyrodite solid electrolyte. While the reduction of FeS<sub>2</sub> was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS<sub>2</sub> utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS<sub>2</sub> particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid-state batteries.</p>


Batteries ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Matthias Coeler ◽  
Vanessa van Laack ◽  
Frederieke Langer ◽  
Annegret Potthoff ◽  
Sören Höhn ◽  
...  

We report a new process technique for electrode manufacturing for all solid-state batteries. Porous electrodes are manufactured by a tape casting process and subsequently infiltrated by a plastic crystal polymer electrolyte (PCPE). With a following isostatic lamination process, the PCPE was further integrated deeply into the porous electrode layer, forming a composite electrode. The PCPE comprises the plastic crystal succinonitrile (SN), lithium conductive salt LiTFSI and polyacrylonitrile (PAN) and exhibits suitable thermal, rheological (ƞ = 0.6 Pa s @ 80 °C 1 s−1) and electrochemical properties (σ > 10−4 S/cm @ 45 °C). We detected a lowered porosity of infiltrated and laminated electrodes through Hg porosimetry, showing a reduction from 25.6% to 2.6% (NCM infiltrated to laminated) and 32.9% to 4.0% (LTO infiltrated to laminated). Infiltration of PCPE into the electrodes was further verified by FESEM images and EDS mapping of sulfur content of the conductive salt. Cycling tests of full cells with NCM and LTO electrodes with PCPE separator at 45 °C showed up to 165 mAh/g at 0.03C over 20 cycles, which is about 97% of the total usable LTO capacity with a coulomb efficiency of between 98 and 99%. Cycling tests at 0.1C showed a capacity of ~128 mAh/g after 40 cycles. The C-rate of 0.2C showed a mean capacity of 127 mAh/g. In summary, we could manufacture full cells using a plastic crystal polymer electrolyte suitable for NCM and LTO active material, which is easily to be integrated into porous electrodes and which is being able to be used in future cell concepts like bipolar stacked cells.


2020 ◽  
Vol 6 (25) ◽  
pp. eaax7236 ◽  
Author(s):  
Kenji Nagao ◽  
Yuka Nagata ◽  
Atsushi Sakuda ◽  
Akitoshi Hayashi ◽  
Minako Deguchi ◽  
...  

An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li2RuO3 as a lithium-excess model material with Li2SO4, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li2RuO3-Li2SO4 matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Amores ◽  
Hany El-Shinawi ◽  
Innes McClelland ◽  
Stephen R. Yeandel ◽  
Peter J. Baker ◽  
...  

AbstractSolid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 946
Author(s):  
Qianyi Yang ◽  
Fuqiang Lu ◽  
Yulin Liu ◽  
Yijie Zhang ◽  
Xiujuan Wang ◽  
...  

Solid electrolytes with high Li-ion conductivity and electrochemical stability are very important for developing high-performance all-solid-state batteries. In this work, Li2(BH4)(NH2) is nanoconfined in the mesoporous silica molecule sieve (SBA-15) using a melting–infiltration approach. This electrolyte exhibits excellent Li-ion conduction properties, achieving a Li-ion conductivity of 5.0 × 10−3 S cm−1 at 55 °C, an electrochemical stability window of 0 to 3.2 V and a Li-ion transference number of 0.97. In addition, this electrolyte can enable the stable cycling of Li|Li2(BH4)(NH2)@SBA-15|TiS2 cells, which exhibit a reversible specific capacity of 150 mAh g−1 with a Coulombic efficiency of 96% after 55 cycles.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuaifeng Lou ◽  
Qianwen Liu ◽  
Fang Zhang ◽  
Qingsong Liu ◽  
Zhenjiang Yu ◽  
...  

Abstract Interfacial issues commonly exist in solid-state batteries, and the microstructural complexity combines with the chemical heterogeneity to govern the local interfacial chemistry. The conventional wisdom suggests that “point-to-point” ion diffusion at the interface determines the ion transport kinetics. Here, we show that solid-solid ion transport kinetics are not only impacted by the physical interfacial contact but are also closely associated with the interior local environments within polycrystalline particles. In spite of the initial discrete interfacial contact, solid-state batteries may still display homogeneous lithium-ion transportation owing to the chemical potential force to achieve an ionic-electronic equilibrium. Nevertheless, once the interior local environment within secondary particle is disrupted upon cycling, it triggers charge distribution from homogeneity to heterogeneity and leads to fast capacity fading. Our work highlights the importance of interior local environment within polycrystalline particles for electrochemical reactions in solid-state batteries and provides crucial insights into underlying mechanism in interfacial transport.


Sign in / Sign up

Export Citation Format

Share Document