scholarly journals Pseudocyclic Bis-N-Heterocycle-Stabilized Iodanes – Synthesis, Characterization and Applications

Author(s):  
Andreas Boelke ◽  
Soleicha Sadat ◽  
Enno Lork ◽  
Boris Nachtsheim

In this manuscript we describe novel bicationic iodonium salts which are stabilized by covalently connected <i>N</i>-heterocycles (Bis-<i>N</i>-Heterocycle-stabilized Iodanes BNHIs). We provide structural data, their synthesis as well as their application in benchmark oxidative transformations.

2021 ◽  
Author(s):  
Andreas Boelke ◽  
Soleicha Sadat ◽  
Enno Lork ◽  
Boris Nachtsheim

In this manuscript we describe novel bicationic iodonium salts which are stabilized by covalently connected <i>N</i>-heterocycles (Bis-<i>N</i>-Heterocycle-stabilized Iodanes BNHIs). We provide structural data, their synthesis as well as their application in benchmark oxidative transformations.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


Author(s):  
S. Wang ◽  
P. R. Buseck

Valleriite is an unusual mineral, consisting of intergrowths of sulfide layers (corresponding in structure to the mineral smythite - Fe9S11) and hydroxide layers (corresponding to brucite - Mg(OH2)). It has a composition of approximately 1.526[Mg.68Al.32(OH)2].[Fe1.07Cu.93S2] and consists of two interpenetrating lattices, each of which retains its individual structural and diffraction characteristics parallel to the layering. The valleriite structure is related to that of tochilinite, an unusual iron-rich mineral that is of considerable interest for the origin of certain carbonaceous chondrite meteorites and to those of franckeite and cylindrite, two minerals that are of interest because of their unique morphological and crystallographic properties, e.g., the distinctive curved form of cylindrite and the perfect mica-like cleavage with unusual striations and the long-period wavy structure of franckeite.Our selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscope (HRTEM) images of valleriite provide new structural data. A basic structure and a new superstructure have been observed.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Author(s):  
Lucien Caspers ◽  
Julian Spils ◽  
Mattis Damrath ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe an efficient approach for the synthesis of cyclic diaryliodonium salts. The method is based on benzyl alcohols as starting materials and consists of an Friedel-Crafts-arylation/oxidation sequence. Besides a deep optimization, particluar focusing on the choice and ratios of the utilized Bronsted-acids and oxidants, we explore the substrate scope of this transformation. We also discuss an interesting isomerism of cyclic iodonium salts substituted with aliphatic substituents at the bridge head carbon. <br>


2020 ◽  
Vol 10 (10) ◽  
pp. 3356 ◽  
Author(s):  
Jose J. Valero-Mas ◽  
Francisco J. Castellanos

Within the Pattern Recognition field, two representations are generally considered for encoding the data: statistical codifications, which describe elements as feature vectors, and structural representations, which encode elements as high-level symbolic data structures such as strings, trees or graphs. While the vast majority of classifiers are capable of addressing statistical spaces, only some particular methods are suitable for structural representations. The kNN classifier constitutes one of the scarce examples of algorithms capable of tackling both statistical and structural spaces. This method is based on the computation of the dissimilarity between all the samples of the set, which is the main reason for its high versatility, but in turn, for its low efficiency as well. Prototype Generation is one of the possibilities for palliating this issue. These mechanisms generate a reduced version of the initial dataset by performing data transformation and aggregation processes on the initial collection. Nevertheless, these generation processes are quite dependent on the data representation considered, being not generally well defined for structural data. In this work we present the adaptation of the generation-based reduction algorithm Reduction through Homogeneous Clusters to the case of string data. This algorithm performs the reduction by partitioning the space into class-homogeneous clusters for then generating a representative prototype as the median value of each group. Thus, the main issue to tackle is the retrieval of the median element of a set of strings. Our comprehensive experimentation comparatively assesses the performance of this algorithm in both the statistical and the string-based spaces. Results prove the relevance of our approach by showing a competitive compromise between classification rate and data reduction.


Author(s):  
Markella Konstantinidou ◽  
Zlata Boiarska ◽  
Roberto Butera ◽  
Constantinos G. Neochoritis ◽  
Katarzyna Kurpiewska ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document