scholarly journals Ferroelectricity and Large Piezoelectric Response of AlN/ScN Superlattice

2018 ◽  
Author(s):  
Mohammad Noor-A-Alam ◽  
Oskar Olszewski ◽  
Michael Nolan

Based on density functional theory, we investigate the ferroelectric and piezoelectric properties of the AlN/ScN superlattice. We find that the polar wurzite (w-ScAlN) structure is mechanically and dynamically stable, and is more stable than the nonpolar hexagonal flat configuration. We show that ferroelectric polarization switching can be possible for epitaxially tensile strained superlattice. Due to the elastic constant C33 softening along with an increase in e33, the piezoelectric coefficient d33 of the superlattice is doubled compared to pure w-AlN. The combined enhancement of Born effective charges (Z33) and the sensitivity of the atomic co-ordinates to external strain (\frac{\partial u_{3}}{\partial\eta_{3}}) is the origin of large piezoelectric constant e33. Moreover, we show that epitaxial biaxial tensile strain significantly enhances the piezo-response, so that d33 is seven times larger than that of w-AlN at 4% strain. The tensile strain results in a huge enhancement in e33by increasing Z33 and \frac{\partial u_{3}}{\partial\eta_{3}}, which boosts the piezoelectric coefficient. As both superlattice growth and epitaxial strain are already experimentally demonstrated in wurzite nitrides, our results show a new, more controlled approach to significantly enhance and tune the piezoelectric response of w-AlN materials.

2018 ◽  
Author(s):  
Mohammad Noor-A-Alam ◽  
Oskar Olszewski ◽  
Michael Nolan

Based on density functional theory, we investigate the ferroelectric and piezoelectric properties of the AlN/ScN superlattice. We find that the polar wurzite (w-ScAlN) structure is mechanically and dynamically stable, and is more stable than the nonpolar hexagonal flat configuration. We show that ferroelectric polarization switching can be possible for epitaxially tensile strained superlattice. Due to the elastic constant C33 softening along with an increase in e33, the piezoelectric coefficient d33 of the superlattice is doubled compared to pure w-AlN. The combined enhancement of Born effective charges (Z33) and the sensitivity of the atomic co-ordinates to external strain (\frac{\partial u_{3}}{\partial\eta_{3}}) is the origin of large piezoelectric constant e33. Moreover, we show that epitaxial biaxial tensile strain significantly enhances the piezo-response, so that d33 is seven times larger than that of w-AlN at 4% strain. The tensile strain results in a huge enhancement in e33by increasing Z33 and \frac{\partial u_{3}}{\partial\eta_{3}}, which boosts the piezoelectric coefficient. As both superlattice growth and epitaxial strain are already experimentally demonstrated in wurzite nitrides, our results show a new, more controlled approach to significantly enhance and tune the piezoelectric response of w-AlN materials.


2010 ◽  
Vol 148-149 ◽  
pp. 1480-1485 ◽  
Author(s):  
Zhong Wen Tan ◽  
Wei Guo Fu ◽  
Xiang Yun Deng ◽  
Ren Bo Yang ◽  
Xiao Fen Guan ◽  
...  

The(1-x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 ceramics have been prepared by sol-gel technique, where x is from 0.2 to 0.6. It reveals that the dense ceramics can be obtained when the sintered temperature is above 1250°C. It is lower than that of solid state reaction ceramics. In particular, when x=0.3, at which is near the MPB composition, the ferroelectric and piezoelectric properties are more excellent than the others. The maximum dielectric constant is above 9000, which can be observed in the butterfly shape curves of dielectric constant as a function of electric field. The maximum piezoelectric coefficient d33 can reach 400 pm/V, and it is obtained from the piezoelectric response loops.


2002 ◽  
Vol 17 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Marlyse Demartin Maeder ◽  
Dragan Damjanovic ◽  
Cyril Voisard ◽  
Nava Setter

The dynamic piezoelectric response of SrBi4Ti4O15 ceramics with Aurivillius structure was investigated at high alternating stress, low frequencies (0.01 to 100 Hz), and temperatures from 20 to 200 °C. The piezoelectric nonlinearity, observed only at high pressures (>10 MPa) and elevated temperatures (>150 °C), is interpreted in terms of contributions from non-180° domain walls. At weak fields, the frequency dependence of the longitudinal piezoelectric coefficient was explained in terms of Maxwell–Wagner piezoelectric relaxation. The Maxwell–Wagner units are identified as colonies that consist of highly anisotropic grains which sinter together, and whose distribution in the ceramic is strongly dependent on sintering conditions.


2021 ◽  
Author(s):  
Dahua Ren ◽  
Qiang Li ◽  
Kai Qian ◽  
Xingyi Tan

Abstract Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we have studied the structural, electronic and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with suitable indirect band gaps of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced by comparison with the GaS monolayer and SnS2 monolayer in the visible light. Our results suggest that GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in visible light.


Author(s):  
Li-Ren Ng ◽  
Guan-Fu Chen ◽  
Shi-Hsin Lin

We calculated the piezoelectric properties of asymmetrically defected MoS2 with density functional theory. By creating uneven numbers of defects on the either sides of two-dimensional MoS2, the out-of-plane centrosym- metry...


2016 ◽  
Vol 18 (19) ◽  
pp. 13232-13238 ◽  
Author(s):  
Soonho Kwon ◽  
Kihyun Shin ◽  
Kihoon Bang ◽  
Hyun You Kim ◽  
Hyuck Mo Lee

The mechanism of the catalytic oxidation of CO activated by MoS2-supported Au19 nanoparticles (NPs) was studied using density functional theory calculations.


Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15385-15391 ◽  
Author(s):  
Ming Li ◽  
Jun Dai ◽  
Xiao Cheng Zeng

A comprehensive study of the effect of tensile strain (ε = 0% to 8%) on the electronic structures of two-dimensional (2D) transition-metal trichalcogenide (TMTC) monolayers MX3 (M = Ti, Zr, Hf, Nb; X = S, Se Te) is performed on the basis of density functional theory (DFT) computation.


RSC Advances ◽  
2015 ◽  
Vol 5 (42) ◽  
pp. 33407-33413 ◽  
Author(s):  
W. X. Zhang ◽  
C. He ◽  
T. Li ◽  
S. B. Gong

The structural, electronic and magnetic properties can be modulated by changing the SW LD locations and axis tensile strain of 10-ZGNRs using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document