A Thermochemical Computational Study on Hydroxyquinolines and their Azulene Analogues

Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.

2018 ◽  
Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.


2003 ◽  
Vol 81 (6) ◽  
pp. 431-442 ◽  
Author(s):  
Arvi Rauk ◽  
Russell J Boyd ◽  
Susan L Boyd ◽  
David J Henry ◽  
Leo Radom

The structures and reactivities of the alkoxy radicals methoxy (CH3O·), ethoxy (CH3CH2O·), 1-propoxy (CH3CH2CH2O·), 2-propoxy ((CH3)2CHO·), 2-butoxy (CH3CH2CH(CH3)O·), tert-butoxy ((CH3)3CO·), prop-2-enoxy (CH2=CHCH2O·), and but-3-en-2-oxy (CH2=CHCH(CH3)O·) have been investigated at the B3-LYP/6-31G(d) and CBS-RAD levels of theory. Enthalpies of formation (ΔfH°298) were calculated with CBS-RAD for all the alkoxy radicals, the carbonyl and radical products of β-scission reactions, and the transition structures leading to them. The mean absolute deviation between the predicted and available experimental ΔfH°298 values is 5.4 kJ mol–1. Eyring (ΔH‡0, ΔH‡298, ΔG‡298) and Arrhenius (log A, Ea) activation parameters for both the forward (β-scission) and reverse (radical addition to carbonyl) pathways were calculated. Agreement with available experimental data is very good, generally within 1–5 kJ mol–1 for Ea, and 0.5 for log A. The transition structures are found to be substantially polarized, with the departing radical slightly positive, the O atom negative, and the rest of the molecule positive. The barriers for the β-scission reactions decrease with decreasing endothermicity and with decreasing ionization energy of the departing radical.Key words: alkoxy, alkoxyl, radical, addition, carbonyl, β-scission, calculaton, electronic structure, B3LYP, CBS-RAD, thermochemistry.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3827
Author(s):  
Vera L. S. Freitas ◽  
Maria D. M. C. Ribeiro da Silva

The energy involved in the structural switching of acyl and hydroxyl substituents in the title compounds was evaluated combining experimental and computational studies. Combustion calorimetry and Knudsen effusion techniques were used to determine the enthalpies of formation, in the crystalline state, and of sublimation, respectively. The gas-phase enthalpy of formation of both isomers was derived combining these two experimental data. Concerning the computational study, the G3(MP2)//B3LYP composite method was used to optimize and determine the energy of the isomers in the gaseous state. From a set of hypothetical reactions it has been possible to estimate the gas-phase enthalpy of formation of the title compounds. The good agreement between the experimental and computational gas-phase enthalpies of formation of the 1-acetyl-2-naphthol and 2-acetyl-1-naphthol isomers, provided the confidence for extending the computational study to the 2-acetyl-3-naphthol isomer. The structural rearrangement of the substituents in position 1 and 2 in the naphthalene ring and the energy of the intramolecular hydrogen bond are the factors responsible for the energetic differences exhibited by the isomers. The gas phase tautomeric keto ↔ enol equilibria of the o-acetylnaphthol isomers were analyzed using the Boltzmann’s distribution.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1266
Author(s):  
Weng Siew Lam ◽  
Weng Hoe Lam ◽  
Saiful Hafizah Jaaman

Investors wish to obtain the best trade-off between the return and risk. In portfolio optimization, the mean-absolute deviation model has been used to achieve the target rate of return and minimize the risk. However, the maximization of entropy is not considered in the mean-absolute deviation model according to past studies. In fact, higher entropy values give higher portfolio diversifications, which can reduce portfolio risk. Therefore, this paper aims to propose a multi-objective optimization model, namely a mean-absolute deviation-entropy model for portfolio optimization by incorporating the maximization of entropy. In addition, the proposed model incorporates the optimal value of each objective function using a goal-programming approach. The objective functions of the proposed model are to maximize the mean return, minimize the absolute deviation and maximize the entropy of the portfolio. The proposed model is illustrated using returns of stocks of the Dow Jones Industrial Average that are listed in the New York Stock Exchange. This study will be of significant impact to investors because the results show that the proposed model outperforms the mean-absolute deviation model and the naive diversification strategy by giving higher a performance ratio. Furthermore, the proposed model generates higher portfolio mean returns than the MAD model and the naive diversification strategy. Investors will be able to generate a well-diversified portfolio in order to minimize unsystematic risk with the proposed model.


Author(s):  
Tatang Rohana Cucu

Abstract - The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang.   Keywords: ANFIS, Backpropagation, Hybrid, Prediction


2019 ◽  
Vol 75 (12) ◽  
pp. 1919-1924
Author(s):  
Abdelkader Ben Ali ◽  
Youness El Bakri ◽  
Chin-Hung Lai ◽  
Jihad Sebhaoui ◽  
Lhoussaine El Ghayati ◽  
...  

In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H...O and C—H...π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H...N, N—H...O and N—H...N hydrogen bonds. The layers are connected by inversion-related pairs of C—H...O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H...H contact. The contribution of the H...O, H...N, and H...H contacts are 13.6, 16.1, and 54.6%, respectively.


2018 ◽  
Vol 23 (2) ◽  
pp. 241-266 ◽  
Author(s):  
Ximena Verónica Jaramillo-Fierro ◽  
César Zambrano ◽  
Francisco Fernández ◽  
Regino Saenz-Puche ◽  
César Costa ◽  
...  

A new Cu(I) complex constructed by reaction of trithiocyanuric acid (ttc) and copper (II) perchlorate hexahydrate has been successfully synthesized by a slow sedimentation method in a DMF solvent at room temperature. The molecular structure of the compound was elucidated by MALDI-TOFMS, UV Vis and FTIR spectroscopy, DSC-TGA analysis and magnetic susceptibility measurement. The proposed structure was corroborated by a computational study carried out with the Gaussian09 and AIMAII programs using the RB3LYP hybrid DFT functional with both 6-31G and Alhrich-TZV basis sets. The calculated vibrational frequencies values were compared with experimental FTIR values. Photophysical properties of the synthesized complex were evaluated by UV-Visible spectroscopy and compared with computed vertical excitation obtained from TDDFT. The theoretical vibrational frequencies and the UV Vis spectra are in good agreement with the experimental values. Additionally, the Frontier Molecular Orbitals (HOMO-LUMO) and the Molecular Electrostatic Potential of the complex was calculated using same theoretical approximation. The results showed the interaction between three coordinatedl igand atoms and the Cu(I) ion.


Sign in / Sign up

Export Citation Format

Share Document