scholarly journals Synthesis, characterization and theoretical calculations of Cu(I) complex of trithiocyanuric acid [Cu(ttc)3]

2018 ◽  
Vol 23 (2) ◽  
pp. 241-266 ◽  
Author(s):  
Ximena Verónica Jaramillo-Fierro ◽  
César Zambrano ◽  
Francisco Fernández ◽  
Regino Saenz-Puche ◽  
César Costa ◽  
...  

A new Cu(I) complex constructed by reaction of trithiocyanuric acid (ttc) and copper (II) perchlorate hexahydrate has been successfully synthesized by a slow sedimentation method in a DMF solvent at room temperature. The molecular structure of the compound was elucidated by MALDI-TOFMS, UV Vis and FTIR spectroscopy, DSC-TGA analysis and magnetic susceptibility measurement. The proposed structure was corroborated by a computational study carried out with the Gaussian09 and AIMAII programs using the RB3LYP hybrid DFT functional with both 6-31G and Alhrich-TZV basis sets. The calculated vibrational frequencies values were compared with experimental FTIR values. Photophysical properties of the synthesized complex were evaluated by UV-Visible spectroscopy and compared with computed vertical excitation obtained from TDDFT. The theoretical vibrational frequencies and the UV Vis spectra are in good agreement with the experimental values. Additionally, the Frontier Molecular Orbitals (HOMO-LUMO) and the Molecular Electrostatic Potential of the complex was calculated using same theoretical approximation. The results showed the interaction between three coordinatedl igand atoms and the Cu(I) ion.

2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali I. Ismail

Ibrutinib, a Bruton’s tyrosine kinase that plays an essential role in the B-cell development and cancer cells, has been recently approved to treat chronic, lymphocytic, and other types of leukemia. This study focused on investigating ibrutinib by its electronic transitions, vibrational frequencies, and electrospray mass spectra. The experimental peaks for electronic spectrum were found at 248.0 and 281.0 nm, whereas the νC = 0 stretching frequency was found at 1652.4 and 1639.19 cm−1. These experimental properties were compared with the corresponding theoretical calculations in which density functional theory was applied. The optimized structure was obtained with the calculations using a hybrid function (B3LYP) and high-level basis sets [6-311G++(d,p)]. Most of the calculated vibrational frequencies showed a relatively good agreement with the experimental ones. The electronic transitions of ibrutinib calculated using time-dependent DFT method were performed at two different solvation methods: PCM and SMD. The mass spectrum of ibrutinib, its fragments, and its isotopic pattern agreed well with the expected spectra.


2006 ◽  
Vol 20 (01) ◽  
pp. 49-61 ◽  
Author(s):  
F. BENKABOU

We have used the molecular-dynamic method for the calculation of the structural, dynamic and elastic properties of group BeS , BeSe and BeTe compounds for temperature ranging from 300 to 1200 K. Tersoff potential has been used to model the interaction between the groups II–VI compound atoms. The structural properties of cubic BeS , BeSe and BeTe have been calculated, and good agreement between the calculated and experimental values have been found. We have also predicted the elastic constants and diffusion coefficients of BeS , BeSe and BeTe . The values found compare very well with the theoretical results. For the temperature range under study, all elastic constants and dynamic properties show a softening with increasing temperature very similar to the theoretical calculations.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Anoop kumar Pandey ◽  
Abhishek Bajpai ◽  
Vikas Baboo ◽  
Apoorva Dwivedi

Isoniazid (Laniazid, Nydrazid), also known as isonicotinylhydrazine (INH), is an organic compound that is the first-line medication in prevention and treatment of tuberculosis. The optimized geometry of the isoniazid and its derivative N-cyclopentylidenepyridine-4-carbohydrazide molecule has been determined by the method of density functional theory (DFT). For both geometry and total energy, it has been combined with B3LYP functionals having LANL2DZ and 6-311 G (d, p) as the basis sets. Using this optimized structure, we have calculated the infrared wavenumbers and compared them with the experimental data. The calculated wavenumbers by LANL2DZ are in an excellent agreement with the experimental values. On the basis of fully optimized ground-state structure, TDDFT//B3LYP/LANL2DZ calculations have been used to determine the low-lying excited states of isoniazid and its derivative. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of isoniazid and its derivative. A complete assignment is provided for the observed FTIR spectra. The molecular HOMO, LUMO composition, their respective energy gaps, and MESP contours/surfaces have also been drawn to explain the activity of isoniazid and its derivative.


Author(s):  
María G. Andino ◽  
Mariela I. Profeta ◽  
Jorge M. Romero ◽  
Nelly L. Jorge ◽  
Eduardo A. Castro

The 2,4-dichlorophenoxyacetic acid (2,4-D) is applied to and recovered from the leaf surfaces of garden bean and corn plants. This paper examines the theoretical study of the 2,4-D IR and UV spectra as well as the determination of its optimized molecular structure. Theoretical calculations are performed at the density functional theory (DFT) levels. The different structural and electronic effects determining the molecular stability of the conformers are discussed in a comparative fashion. The optimized geometry was calculated via the B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets and the FT-IR spectra was calculated by the density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers show good agreement with the experimental values. A detailed interpretation of the infrared spectra of 2,4-D is reported.


2011 ◽  
Vol 89 (2) ◽  
pp. 235-240 ◽  
Author(s):  
K. U. Ingold ◽  
Gino A. DiLabio

The dynamics of the 1,4-migration of some O-substituted 3,5-di-tert-butyl-ortho-semiquinone radicals have been calculated by density-functional theory (DFT). There is very good agreement in the rate constant and Arrhenius parameters between these calculations and experimental values for migration of H, D, and the Me3Si group. For the Me3Sn group, the calculations indicate an incredibly fast migration (k293K = 2.0 × 1012 s–1), a result that is consistent with experimental data (k293K > 109 s–1). Other O-substituents examined by DFT and compared with experimental data were H3C and Me2ClSn.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 808 ◽  
Author(s):  
Tianhua Ju ◽  
Xueyong Ding ◽  
Yingyi Zhang ◽  
Weiliang Chen ◽  
Xiangkui Cheng ◽  
...  

It is important to know the activity interaction parameters between components in melts in the process of metallurgy. However, it’s considerably difficult to measure them experimentally, relying still to a large extent on theoretical calculations. In this paper, the first-order activity interaction parameter (esj) of j on sulphur in Fe-based melts at 1873 K is investigated by a calculation model established by combining the Miedema model and Toop-Hillert geometric model as well as considering excess entropy and mixing enthalpy. We consider two strategies, with or without using excess entropy in the calculations. Our results show that: (1) the predicted values are in good agreement with those recommended by Japan Society for Promotion of Science (JSPS); and (2) the agreement is even better when excess entropy is considered in the calculations. In addition, the deviations of our theoretical results from experimental values eS(exp)j-eS(cal)j depend on the element j’s locations in the periodic table.


1984 ◽  
Vol 39 (12) ◽  
pp. 1168-1171
Author(s):  
C. T. Yap ◽  
E. L. Saw

Although experimental values of the Fermi nuclear matrix elements vary widely from about 1 × 10-3 to 40 × 10-3 for isospin-forbidden 0+→0+ β transitions, theoretical calculations using the Coulomb potential and Nilsson wave functions yielded values of MF in reasonably good agreement, except that of 234Np. However, our calculation of MF for this decay as a function of the deformation parameter β yielded a value of MF in good agreement with experiment for values of β between 0.1 and 0.2.


2018 ◽  
Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.


2018 ◽  
Author(s):  
Moyassar Meshhal ◽  
Safinaz El-Demerdash ◽  
Ahmed El-Nahas

Ab initio CBS-QB3 method has been used to determine gas-phase enthalpies of formation for 34 compounds including a number of hydroxyquinoline isomers, the corresponding azulene analogues and their parent systems. The mean absolute deviation of 4.43 kJ/mol reveals good agreement between our results and the available experimental data. Relative thermodynamic stabilities of hydroxyquinoline isomers and related analogues were discussed and several isomerization reactions enthalpies were derived. The same level of theory has also been utilized to calculate adiabatic ionization energies and electron affinities for the molecules with known experimental values and the agreement between theory and experiment was found to be within 8 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document