scholarly journals Oriented Graphene Based Electrochemical Supercapacitor

Author(s):  
Jingxiao Lyu ◽  
Mohannad Mayyas ◽  
Osama Salim ◽  
Dewei Chu ◽  
Rakesh Joshi

Graphene has attracted substantial interest as potential carbon electrode material for energy storage applications. Yet, the utility of this material for these applications is governed by its stability and microstructure (i.e., surface area and porosity). Graphene can be prepared in controlled orientation by changing the surface chemistry of GO flakes in suspensions via reduction which causes the graphene to coagulate and self-assemble in specific patterns. Tuning the structure and porosity of oriented graphene is possible by varying the synthesis conditions. Herein, we report the growth of oriented graphene from a relatively small flake size GO suspension. The prepared electrode material demonstrated an excellent electrochemical performance with a supercapacitance value of 195 F g-1 at 1 mV s-1 and low real impedance with good stability and integrity after 4000 cycles of continuous charge-discharge in 1 M KOH electrolyte. This excellent performance is due to the unique architecture of the oriented graphene which comprises micro-slits and meso-channels among the sheets. The meso-channels were suggested to allow rapid diffusion of charge carriers and ions while the micro-slits increase more surface area for electrochemical interactions per unit volume. The observations reported herein create a new understanding of the structure-stability-performance trade-off in oriented graphene and layout the foundation for further investigations on their sustainable utilization in energy storage applications.

2019 ◽  
Author(s):  
Jingxiao Lyu ◽  
Mohannad Mayyas ◽  
Osama Salim ◽  
Dewei Chu ◽  
Rakesh Joshi

Graphene has attracted substantial interest as potential carbon electrode material for energy storage applications. Yet, the utility of this material for these applications is governed by its stability and microstructure (i.e., surface area and porosity). Graphene can be prepared in controlled orientation by changing the surface chemistry of GO flakes in suspensions via reduction which causes the graphene to coagulate and self-assemble in specific patterns. Tuning the structure and porosity of oriented graphene is possible by varying the synthesis conditions. Herein, we report the growth of oriented graphene from a relatively small flake size GO suspension. The prepared electrode material demonstrated an excellent electrochemical performance with a supercapacitance value of 195 F g-1 at 1 mV s-1 and low real impedance with good stability and integrity after 4000 cycles of continuous charge-discharge in 1 M KOH electrolyte. This excellent performance is due to the unique architecture of the oriented graphene which comprises micro-slits and meso-channels among the sheets. The meso-channels were suggested to allow rapid diffusion of charge carriers and ions while the micro-slits increase more surface area for electrochemical interactions per unit volume. The observations reported herein create a new understanding of the structure-stability-performance trade-off in oriented graphene and layout the foundation for further investigations on their sustainable utilization in energy storage applications.


Author(s):  
Linlin Liu ◽  
Zhen Ji ◽  
Shuyan Zhao ◽  
Qingyuan Niu ◽  
Songqi Hu

The delignified wood-based self-supporting carbon material is an ideal basic interdigital flexible electrode material, which has good application potential.


2021 ◽  
Vol 11 (14) ◽  
pp. 6342
Author(s):  
Reyna Berenice González-González ◽  
Nadia Ruiz-Gómez ◽  
Gloria Gea ◽  
Matias Vazquez-Pinon ◽  
Sergio O. Martinez-Chapa ◽  
...  

The problems related to the increase in the generation of discarded tires demonstrate the need for profitable, efficient, cost-effective, and sustainable processes for their waste management. In particular, the valorization of pyrolytic solids for energy storage applications is of interest. In this study, four processes were performed: (1) pyrolysis; (2) chemical activation and pyrolysis; (3) pyrolysis and physical activation; and (4) chemical activation, pyrolysis, and physical activation. The process consisting of chemical activation, pyrolysis, and physical activation yielded 52% solid material with the highest electrical conductivity (2.43 Ω–1 cm–1) and a surface area of 339 m2/g with an average pore size of 3.6 nm. In addition, it was found that pore size had a greater effect on the conductivity than surface area. Liquid and gas fraction compositions were modified by the presence of chemical activation: aromatization reactions were favored, and limonene was not observed in the liquid fraction, while an increase on the CH4 concentration caused an increment in the heating value of the gas fraction. It was demonstrated that chemical and physical activation enhance the properties of the pyrolytic solid product derived from waste tires that make it suitable for the partial substitution of materials for electric energy storage applications.


2018 ◽  
Vol 6 (47) ◽  
pp. 24603-24613 ◽  
Author(s):  
Xing Zhou ◽  
Xiaohui Li ◽  
Dejian Chen ◽  
Danyang Zhao ◽  
Xintang Huang

Ultrathin layered double hydroxide (LDH) nanosheets are a promising candidate as the electrode material for energy storage due to the ultrafast mass diffusion and greater specific surface area.


2020 ◽  
Vol 4 (10) ◽  
pp. 5313-5326 ◽  
Author(s):  
S. Rajkumar ◽  
E. Elanthamilan ◽  
J. Princy Merlin ◽  
I. Jenisha Daisy Priscillal ◽  
I. Sharmila Lydia

The as-synthesized CuCo2O4/PANI nanocomposite has emerged as a new type of electrode material for energy storage applications due to its low cost and sustainable and high electrochemical performance.


Author(s):  
Peng Wang ◽  
Danyang Zhao ◽  
Long-Wei Yin

Diversified electrochemical energy storage systems highly depend on electrode material construction. In response, single atom catalysts intentionally incorporated within two-dimensional (2D) matrices (SAs@2D) can offer desirable advantages derived from the...


Sign in / Sign up

Export Citation Format

Share Document