scholarly journals Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments

2019 ◽  
Author(s):  
David Doran ◽  
Yousef M. Abul-Haija ◽  
Leroy Cronin

<b>Living systems are characterised by an ability to sustain chemical reaction networks far-from-equilibrium. It is likely that life first arose through a process of continual disruption of equilibrium states in recursive reaction networks, driven by periodic environmental changes allowing the emergence of a memory. Herein, we report the emergence of proto-enzymatic function from recursive polymerisation reactions using amino acids and glycolic acid over four wet-dry cycles. Reactions are kept out of equilibrium by diluting products 9:1 in fresh starting solution at the end of each recursive cycle, and the development of complex high molecular weight species is explored using a new metric, the Mass Index, which allows the complexity of the system to be explored as a function of cycle. This process is carried out on a range of different mineral environments. We explore the hypothesis that disrupting equilibrium <i>via</i> recursive cycling imposes a selection pressure and subsequent boundary conditions on products, which may otherwise be prone to uncontrolled combinatorial explosion. After just four reaction cycles, product mixtures from recursive reactions exhibit greater catalytic activity and truncation of product space towards higher molecular weight species compared to non-recursive controls. </b>

2019 ◽  
Author(s):  
David Doran ◽  
Yousef M. Abul-Haija ◽  
Leroy Cronin

<b>Living systems are characterised by an ability to sustain chemical reaction networks far-from-equilibrium. It is likely that life first arose through a process of continual disruption of equilibrium states in recursive reaction networks, driven by periodic environmental changes allowing the emergence of a memory. Herein, we report the emergence of proto-enzymatic function from recursive polymerisation reactions using amino acids and glycolic acid over four wet-dry cycles. Reactions are kept out of equilibrium by diluting products 9:1 in fresh starting solution at the end of each recursive cycle, and the development of complex high molecular weight species is explored using a new metric, the Mass Index, which allows the complexity of the system to be explored as a function of cycle. This process is carried out on a range of different mineral environments. We explore the hypothesis that disrupting equilibrium <i>via</i> recursive cycling imposes a selection pressure and subsequent boundary conditions on products, which may otherwise be prone to uncontrolled combinatorial explosion. After just four reaction cycles, product mixtures from recursive reactions exhibit greater catalytic activity and truncation of product space towards higher molecular weight species compared to non-recursive controls. </b>


2021 ◽  
Author(s):  
Patrick S. Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase...


2020 ◽  
Vol 1 (7) ◽  
pp. 320-329
Author(s):  
Ayman A Elshayeb ◽  
Amna Elfatih ◽  
Karimeldin MA Salih ◽  
Nada SE Mustafa4

Introduction: The invasion of bacteriophage on the associated host bacterium depends on their receptors' orientation that adsorb them to cell surface. During phage replication a valuable number of proteins acts as lytic enzymes for host puncher at the beginning of the infection and other for burst after lytic cycle compilation. Accordingly, the proteomic relationship among phage and bacterium proteins could easily be studied by their protein profiles analysis. Objective: To detect bacteriophages functional enzymes during lytic cycle. Methods: The isolation and identification of Escherichia coli and their parasitic T7 phage group was done using bacterial culture and common plaque assay techniques. The investigations and protein-protein interactions' assays were inveterate by proteins profile of phage and bacterium using Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis (SDS-PAGE) to find out their molecular weights, where the scaled location of each mobile band was compared to the standards of identified proteins weights in the molecular ladder. Thereafter, Protein model's assembly and bands migration was done by computer analytical software. Results: Mobilization of the phage' proteins inside the Two Dimensions (2D) gel ranged between 60 and 12 kDa where a model of 4 main bands with molecular weights of (46, 35, 24 and 14 kDa) is corresponded to the host ones, where pure 9 bands with molecular weight ranged between 96-24 kDa. The computational model analysis showed common shared molecular masses of 47, 34 and 16 kDa on plot area of the phage and the bacterium. Model interpretation confirmed that proteins ranged from 47.7 to 34.3 kDa resembles 43.3% of whole phage's proteins that assembled the capsid head and the coil, while the molecular weight mass of 22.5 formed the tail's proteins. The lytic enzymes' molecular weight was ranged between 18-14 kDa according to the function of the enzyme. The study revealed that the 34 kDa band has the common shared peak between T7 phage group and associated Escherichia coli host. Conclusion: Functional models of analysed proteins during phage assembly, ensures lytic enzymes are built in the capsid head and the lysozyme in the tail, they facilitate the enzymatic decay for bacterial host. This enzymatic function is related to the lytic cycle of the bacteriophages and their phenomenon in employing the bacterial DNA in proteins manufacturing during their replication inside host.


2019 ◽  
Author(s):  
Leroy Cronin ◽  
Stephanie Colón-Santos ◽  
Geoffrey Cooper

<p><i>One-pot reactions of simple precursors, such as those found in the formose reaction or formamide condensation, continuously lead to combinatorial explosions in which simple building blocks capable of function exist, but are in insufficient concentration to self-organize, adapt, and thus generate complexity. We set out to explore the effect of recursion on such complex mixtures by ‘seeding’ the product mixture into a fresh version of the reaction, with the inclusion of different mineral environments, over a number of reaction cycles. Through untargeted UPLC-HRMS analysis of the mixtures<a> we found that the overall number of products detected reduces as the number of cycles increases, as a result of recursively enhanced mineral environment selectivity, </a>thus limiting the combinatorial explosion. This discovery demonstrates how the involvement of mineral surfaces with simple reactions could lead to the emergence of some building blocks found in RNA, </i><i>Ribose and Uracil, under much simpler conditions that originally thought.</i><i> </i></p>


2015 ◽  
Vol 489 ◽  
pp. 25-31 ◽  
Author(s):  
Yuling Zhang ◽  
Abhishek Mathur ◽  
Gwen Maher ◽  
Thomas Arroll ◽  
Robert Bailey

Sign in / Sign up

Export Citation Format

Share Document