scholarly journals Uncertainty Estimates for Magnetic Relaxation Times and Magnetic Relaxation Parameters

Author(s):  
Daniel Reta ◽  
Nicholas Chilton

We describe a method for obtaining uncertainties in magnetic relaxation times from AC susceptibility experiments. We provide a program for fitting AC data and the resulting magnetic relaxation times accounting for the uncertainties correctly, to give magnetic relaxation parameters with accurate uncertainties. We show that the implicit distributions in the magnetic relaxation times have large consequences for the uncertainties in the model parameters, and that the magnitude of these uncertainties appear to correlate with crystallographic disorder in three families of high-performance Dy(III) single-molecule magnets.

2019 ◽  
Author(s):  
Daniel Reta ◽  
Nicholas Chilton

We describe a method for obtaining uncertainties in magnetic relaxation times from AC susceptibility experiments. We provide a program for fitting AC data and the resulting magnetic relaxation times accounting for the uncertainties correctly, to give magnetic relaxation parameters with accurate uncertainties. We show that the implicit distributions in the magnetic relaxation times have large consequences for the uncertainties in the model parameters, and that the magnitude of these uncertainties appear to correlate with crystallographic disorder in three families of high-performance Dy(III) single-molecule magnets.


2021 ◽  
Vol 7 (9) ◽  
pp. 122
Author(s):  
Oleksandr Pastukh ◽  
Piotr Konieczny ◽  
Magdalena Laskowska ◽  
Łukasz Laskowski

The study of magnetic relaxations in Mn12-stearate single-molecule magnets deposited on the surface of spherical silica nanoparticles was performed. For such a purpose, the investigation of AC magnetic susceptibility dependence on the frequency and temperature was performed. Based on the Argand plots obtained for different temperatures and temperature dependencies of susceptibility, obtained for different frequencies of AC field, the corresponding relaxation times were derived. Fitting to the Arrhenius law revealed the values of an effective energy barrier and a mean relaxation time, which were consistent for both measuring techniques (Ueff/kB∼ 50 K and τ0∼ 10−7 s) and similar to the corresponding values for the analogous bulk compounds. Additionally, the obtained relaxation parameters for the Mn12-stearate molecules on the spherical silica surface were compared with corresponding values for the Mn12-based single-molecule magnets deposited upon other types of nanostructured silica surface.


2019 ◽  
Vol 21 (42) ◽  
pp. 23567-23575 ◽  
Author(s):  
Daniel Reta ◽  
Nicholas F. Chilton

Uncertainties in magnetic relaxation times from AC magnetometry are derived and a program for obtaining them is described, allowing statistically meaningful magnetic relaxation parameterisation.


2015 ◽  
Vol 44 (29) ◽  
pp. 13242-13249 ◽  
Author(s):  
Malay Dolai ◽  
Mahammad Ali ◽  
Ján Titiš ◽  
Roman Boča

Two CuII–DyIII and CoIII–DyIII dinuclear complexes of a Schiff base ligand (H3L) exhibit single-molecule magnetic behaviour with multiple slow magnetic relaxation processes for the former.


2016 ◽  
Vol 52 (26) ◽  
pp. 4772-4775 ◽  
Author(s):  
Szymon Chorazy ◽  
Michał Rams ◽  
Anna Hoczek ◽  
Bernard Czarnecki ◽  
Barbara Sieklucka ◽  
...  

{CoII9[WV(CN)8]6} clusters capped by odd and even number of bidentate ligands reveal the improved slow magnetic relaxation due to the significant structural anisotropy.


2017 ◽  
Vol 46 (25) ◽  
pp. 8259-8268 ◽  
Author(s):  
Wan-Ying Zhang ◽  
Yong-Mei Tian ◽  
Hong-Feng Li ◽  
Peng Chen ◽  
Yi-Quan Zhang ◽  
...  

A series of linear trinuclear complexes Ln2M(OQ)8 [Ln(iii) = Dy and Er, M(ii) = Ca and Mg] were structurally and magnetically investigated.


2020 ◽  
Author(s):  
Maciej Korzynski ◽  
Zachariah Berkson ◽  
Boris Le Guennic ◽  
Olivier Cador ◽  
Christophe Copéret

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as applications in quantum computing and spintronics. To date, the most successful SMMs are organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to sensitivity of magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchorages not only enable successful immobilization, but also lead to two-orders-of-magnitude increase in magnetization relaxation times and provide magnetic site dilution.


2014 ◽  
Vol 67 (11) ◽  
pp. 1542 ◽  
Author(s):  
Michele Vonci ◽  
Colette Boskovic

Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].


2020 ◽  
Vol 59 (49) ◽  
pp. 22048-22053
Author(s):  
Chihiro Kachi‐Terajima ◽  
Tasuku Eiba ◽  
Rikako Ishii ◽  
Hitoshi Miyasaka ◽  
Yuta Kodama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document