scholarly journals Synthesis and Initial Pharmacology of Heterobivalent Ligands Targeting Putative Complexes of Integrin αVβ3 and PAR2

2019 ◽  
Author(s):  
Mark Majewski ◽  
Disha Gandhi ◽  
Trudy Holyst ◽  
Zhengli Wang ◽  
Irene Hernandez ◽  
...  

Unpublished data from our labs led us to hypothesize that activated Protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and Protease-Activated Receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized heterobivalent ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these bivalent ligands are effective binders of αVβ3 and potent agonists of PAR2. These bivalent ligands were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins.

2019 ◽  
Author(s):  
Mark Majewski ◽  
Disha Gandhi ◽  
Trudy Holyst ◽  
Zhengli Wang ◽  
Irene Hernandez ◽  
...  

Unpublished data from our labs led us to hypothesize that activated Protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and Protease-Activated Receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized heterobivalent ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these bivalent ligands are effective binders of αVβ3 and potent agonists of PAR2. These bivalent ligands were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins.


Author(s):  
Mark Majewski ◽  
Disha Gandhi ◽  
Trudy Holyst ◽  
Zhengli Wang ◽  
Irene Hernandez ◽  
...  

Unpublished data from our labs led us to hypothesize that activated Protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and Protease-Activated Receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized heterobivalent ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these bivalent ligands are effective binders of αVβ3 and potent agonists of PAR2. These bivalent ligands were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins.


2005 ◽  
Vol 93 (04) ◽  
pp. 743-750 ◽  
Author(s):  
Sarah Horn ◽  
Siegfried Lang ◽  
Kenji Fukudome ◽  
Adriane Nahrup ◽  
Ursula Hoffmann ◽  
...  

SummaryProstacyclin (PGI2) has beneficial cytoprotective properties, is a potent inhibitor of platelet aggregation and has been reported to improve microcirculatory blood flow during sepsis. The formation of PGI2 in response to proinflammatory cytokines is catalysed by the inducible cyclooxygenase (COX) isoform COX-2. Recombinant human activated protein C (rhAPC, drotrecogin alfa (activated)) was shown to have multiple biological activities in vitro and to promote resolution of organ dysfunction in septic patients. Whether rhAPC exerts its beneficial effects by modulating prostanoid generation is unknown up to now. It was therefore the aim of the study to examine the in vitro effect of rhAPC on COX-2-mRNA-expression and PGI2 release from human umbilical vein endothelial cells (HUVEC). We found that rhAPC, at supra-therapeutical concentrations (500ng/ml-20μg/ ml), upregulated the amount of COX-2-mRNA in HUVEC at t=3–9h and caused a time- and dose-dependent release of 6-keto PGF1α, the stable hydrolysis product of prostacyclin. RhAPC further increased the stimulating effect of tumor necrosis factor-α (TNF-α) and thrombin on COX-2-mRNA-levels. Transcript levels of cyclooxygenase-1 (COX-1) and prostagland-in I2 synthase, however, were unaffected by the stimulation with rhAPC or thrombin. The upregulatory effect on COX2-mRNA levels was specific for rhAPC since the zymogen protein C in equimolar concentrations had no effect on COX-2-mRNA-levels or 6keto PGF1α-release. Western Blot analysis revealed an increase of COX-2-protein content in HUVEC after treatment with rhAPC. As shown by experiments using monoclonal antibodies against the thrombin receptor PAR-1 (mAb=ATAP2) and against the endothelial protein C receptor (EPCR; mAb=RCR-252), the effect of rhAPC on COX-2-mRNA up-regulation was mediated by binding to the EPCR-receptor and signaling via PAR-1. These results demonstrate that induction of COX-2-expression is an important response of HUVEC to stimulation with rhAPC and may represent a new molecular mechanism, by which rhAPC promotes upregulation of prostanoid production in human endothelium.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 146-151 ◽  
Author(s):  
Arne Slungaard ◽  
Jose A. Fernandez ◽  
John H. Griffin ◽  
Nigel S. Key ◽  
Janel R. Long ◽  
...  

Abstract Platelet factor 4 (PF4), an abundant platelet α-granule protein, accelerates in vitro generation of activated protein C (APC) by soluble thrombin/thrombomodulin (TM) complexes up to 25-fold. To test the hypothesis that PF4 similarly stimulates endothelium-associated TM, we assessed the influence of human PF4 on thrombin-dependent APC generation by cultured endothelial monolayers. APC generated in the presence of 1 to 100 μg PF4 was up to 5-fold higher than baseline for human umbilical vein endothelial cells, 10-fold higher for microvascular endothelial cells, and unaltered for blood outgrowth endothelial cells. In an in vivo model, cynomolgus monkeys (n = 6, each serving as its own control) were infused with either PF4 (7.5 mg/kg) or vehicle buffer, then with human thrombin (1.0 μg/kg/min) for 10 minutes. Circulating APC levels (baseline 3 ng/mL) peaked at 10 minutes, when PF4-treated and vehicle-treated animals had APC levels of 67 ± 5 ng/mL and 39 ± 2 ng/mL, respectively (P < .001). The activated partial thromboplastin time (APTT; baseline, 28 seconds) increased maximally by 27 ± 6 seconds in PF4-treated animals and by 9 ± 1 seconds in control animals at 30 minutes (P < .001). PF4-dependent increases in circulating APC and APTT persisted more than 2-fold greater than that of control's from 10 through 120 minutes (P ≤ .04). All APTT prolongations were essentially reversed by monoclonal antibody C3, which blocks APC activity. Thus, physiologically relevant concentrations of PF4 stimulate thrombin-dependent APC generation both in vitro by cultured endothelial cells and in vivo in a primate thrombin infusion model. These findings suggest that PF4 may play a previously unsuspected physiologic role in enhancing APC generation. (Blood. 2003;102:146-151)


1995 ◽  
Vol 73 (04) ◽  
pp. 719-724 ◽  
Author(s):  
Hans-Peter Kohler ◽  
Michele Müller ◽  
Thomas Bombeli ◽  
P Werner Straub ◽  
André Haeberli

SummaryHuman umbilical vein endothelial cells (HUVEC) were cultivated on globular microcarriers in order to improve the endothelial cell surface to blood-volume ratio over the conventional flat bed cultures. HUVEC-beads were tested for their modulation of blood coagulation using a combination of two steps: HUVEC-beads were added into the syringe used for the venipuncture, in order to achieve immediate contact between cells and blood, and no anticoagulant was used during the incubation time of HUVEC-beads with whole blood. The coagulation initiation produced by venipuncture was almost completely suppressed as judged by thrombin measurements over a period of 60 min. The activated partial thromboplastin time showed a prolongation by a factor >3. Direct measurements of activated protein C (APC) were negative. Moreover, inhibition of APC-generation with a monoclonal anti-human protein C antibody did not affect the anticoagulant properties of endothelial cells. Therefore the anticoagulant properties exerted by HUVEC-beads are not dependent on APC.


Blood ◽  
2012 ◽  
Vol 120 (26) ◽  
pp. 5237-5246 ◽  
Author(s):  
Laurent O. Mosnier ◽  
Ranjeet K. Sinha ◽  
Laurent Burnier ◽  
Eveline A. Bouwens ◽  
John H. Griffin

Abstract Activated protein C (APC) exerts endothelial cytoprotective actions that require protease-activated receptor 1 (PAR1), whereas thrombin acting via PAR1 causes endothelial disruptive, proinflammatory actions. APC's activities, but not thrombin's, require PAR1 located in caveolae. PAR1 is a biased 7-transmembrane receptor because G proteins mediate thrombin's signaling, whereas β-arrestin 2 mediates APC's signaling. Here we elucidate novel mechanisms for APC's initiation of signaling. Biochemical studies of APC's protease specificity showed that APC cleaved PAR1 sequences at both Arg41 and Arg46. That PAR1 cleavage at Arg46 can occur on cells was supported by APC's cleavage of N-terminal-SEAP-tagged R41Q-PAR1 but not R41Q/R46Q-PAR1 mutants transfected into cells and by anti-PAR1 epitope mapping of APC-treated endothelial cells. A synthetic peptide composing PAR1 residues 47-66, TR47, stimulated protective signaling in endothelial cells as reflected in Akt and glycogen synthase kinase 3β phosphorylation, Ras-related C3 botulinum toxin substrate 1 activation, and barrier stabilization effects. In mice, the TR47 peptide reduced VEGF-induced vascular leakage. These in vitro and in vivo data imply that the novel PAR1 N-terminus beginning at residue Asn47, which is generated by APC cleavage at Arg46, mediates APC's cytoprotective signaling and that this unique APC-generated N-terminal peptide tail is a novel biased agonist for PAR1.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-44-SCI-44
Author(s):  
John H. Griffin ◽  
Laurent O. Mosnier

Abstract SCI-44 Plasma protein C is known for its mild deficiency linked to venous thrombosis risk and severe deficiency linked to neonatal purpura fulminans. Activated protein C (APC) exerts both anticoagulant activity via proteolytic inactivation of factors Va and VIIIa and cellular cytoprotective actions via direct initiation of cell signaling. Based on studies of engineered APC mutants and the use of genetically modified mice, APC’s cell signaling actions are thought to drive murine APC’s mortality reduction in sepsis models, neuroprotective actions in brain injury models, and nephroprotective effects in kidney injury models. These actions in vivo are generally suggested to involve multiple receptors (PAR1, endothelial protein C receptor [EPCR], PAR3, and CD11b), while in vitro studies implicate these receptors and potentially also other receptors (apoER2, β1 and β3 integrins, S1P1, and the angiopoietin/Tie-2 axis) for APC’s cellular effects. Crosstalk among these receptors may permit a timely integration of APC-induced signaling, which ultimately determines APC’s effects on a specific cell and organ. Central to many in vivo and in vitro published studies is the implication that APC provides beneficial effects via EPCR-dependent PAR1-dependent cell signaling. This central role for PAR1 poses the dilemma of how thrombin and APC can often seem to have opposing effects when activating PAR1. Microdomain-specific PAR1 signaling by APC versus thrombin may help explain some observations. Binding of protein C or APC to EPCR on endothelial cells appears to determine whether these proteins and PAR1 are or are not colocalized in microdomains with caveolin-1. APC’s activation of Rac1 via PAR1 requires EPCR and caveolin-1 whereas thrombin’s activation of RhoA via PAR1 is independent of EPCR and caveolin-1. We hypothesized that APC might cleave PAR1 not only at Arg41 but also at Arg46 with distinct consequences and that this could distinguish APC’s from thrombin’s signaling. We found that APC cleaved the PAR1 N-terminal synthetic TR33-66 peptide at Arg41 and also at another site distal from Arg41. Isolation of the novel proteolytic fragments and their MALDI-TOF analysis identified Arg46 as that cleavage site. When cells containing EPCR were transfected with secretable alkaline phosphatase (SEAP)-PAR1 wild type and mutant constructs, both thrombin and APC cleaved wt-PAR1 but not R41Q/R46Q-PAR1. As expected, thrombin also did not cleave R41A-PAR1 or R41Q-PAR1. But APC very efficiently cleaved both the R41A-PAR1 and the R41Q-PAR1 mutants. We tested a synthetic PAR1 analog peptide (Asn47-residue 66) to see if it could promote signaling. This PAR1 (47–66)-peptide increased Akt phosphorylation at Ser473 in endothelial cells over 30 minutes whereas neither a control scrambled sequence (47–66)-peptide nor a TRAP peptide had a similar effect. The PAR1 (47–66)-peptide, but the control scrambled sequence-peptide or TRAP, inhibited staurosporine-induced endothelial cell apoptosis. Thus, it appears that the new N-terminus generated by APC’s cleavage at Arg46 in PAR1 generates a novel tethered ligand, which could induce selective APC-like protective signaling. Hence, APC is capable of a unique, functionally significant cleavage of PAR1. Further in vitro and in vivo studies are needed to address a number of obvious questions. In summary, explanations for APC’s beneficial cellular cytoprotective effects may be found in its ability to signal via multiple receptors selectively located in different cell membrane microdomains and potentially also in its ability to activate PARs by cleavages at unique sites, which initiate unique signaling events on different cells in different organs. Disclosures: Griffin: ZZBiotech LLC: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Scripps Research Institute: Employment, Patents & Royalties. Mosnier:Scripps Research institute: Employment, Patents & Royalties.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
Margarita Pérez-Casal ◽  
Colin Downey ◽  
Kenji Fukudome ◽  
Gernot Marx ◽  
Cheng Hock Toh

Abstract Activated protein C (APC) treatment is now used for patients with severe sepsis. We investigated its effect in vitro on primary, physiologically relevant cells and demonstrate a novel mechanism of endothelial protein C receptor (EPCR) release that is not inhibited by metalloproteinase inhibitors. Exposure of human umbilical vein endothelial cells or monocytes to APC (6.25-100 nM) results in the release of EPCR-containing microparticles, as demonstrated by confocal microscopy and characterized through flow cytometry, enzyme-linked immunosorbent assay quantitation of isolated microparticles, and Western blotting. The phenomenon is time- and concentration-dependent and requires the APC active site, EPCR, and protease activated receptor 1 (PAR1) on endothelial cells. Neither protein C nor boiled or d-Phe-Pro-Arg-chloromethylketone–blocked APC can induce microparticle formation and antibody blockade of EPCR or PAR1 cleavage and activation abrogates this APC action. Coincubation with hirudin does not alter the APC effect. The released microparticle bound is full-length EPCR (49 kDa) and APC retains factor V–inactivating activity. Although tumor necrosis factor-α (10 ng/mL) can also induce microparticle-associated EPCR release to a similar extent as APC (100 nM), it is only APC-induced microparticles that contain bound APC. This novel observation could provide new insights into the consequences of APC therapy in the septic patient.


2009 ◽  
Vol 101 (04) ◽  
pp. 724-733 ◽  
Author(s):  
José Fernández ◽  
John Griffin ◽  
Reto Schuepbach ◽  
Clemens Feistritzer ◽  
Matthias Riewald

SummaryProtease activated receptor-1 (PAR1) mediates barrier protective signalling of activated protein C (APC) in human endothelial cells in vitro and may contribute to APC’s beneficial effects in patients with severe sepsis. Mouse models are of key importance for translational research but species differences may limit conclusions for the human system. We analysed whether mouse APC can cleave, activate and induce signalling through murine PAR1 and tested in newly established mouse models if long-term infusion of APC prevents from vascular leakage. Cell surface immunoassays demonstrated efficient cleavage of endogenous murine endothelial PAR1 by either murine or human APC. Pharmacological concentrations of APC of either species had powerful barrier protective effects on cultured murine endothelial cells that required PAR1 cleavage. Vascular endothelial growth factor-mediated hyperpermeability in the skin was reduced by either endogenously generated as well as directly infused recombinant mouse APC in wild-type mice. However APC did not significantly alter the vascular barrier function in PAR1-deficient mice. In endotoxin-challenged mice, infused APC significantly prevented from pulmonary fluid accumulation in the wild-type mice but not in mice lacking PAR1. Our results directly show that murine APC cleaves and signals through PAR1 in mouse endothelial cells. APC reduces vascular permeability in mouse models and PAR1 plays a major role in mediating these effects. Our data in vitro and in vivo support the paradigm that PAR1 contributes to protective effects of APC on vascular barrier integrity in sepsis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3694-3694
Author(s):  
Jay Nelson Lozier ◽  
Felice D’Agnillo

Abstract High dose adenovirus vector administration in vivo has been associated with toxicity toward many cell types, including endothelial cells. Some of the prominent pathological features of an adenovirus vector death in a gene therapy trial included capillary leak syndrome and disseminated intravascular coagulation (DIC). We investigated the hypothesis that activated protein C (APC) might have a protective effect on primary human microvascular endothelial cells exposed to a first-generation adenovirus vector. We exposed primary human endothelial cells to a first-generation (E1, E3 deleted) adenovirus vector, AVC3FIX5 at concentrations ranging from 103 to 105 vector particles per cell and showed dose-dependent cell death as early as 6 hours (40% cell death at the highest dose). Phase contrast and immunofluorescence microscopy revealed that some cells died rapidly by primary necrosis while others died by apoptosis over a longer time course. By 40 hours, only 40% of the cells were viable. We then tested the effect of pretreatment of endothelial cells with APC concentrations ranging from 1 nM to 100 nM. Dose-dependent protection was seen in which cell death was reduced to 9 and 2 % at APC concentrations of 50 and 100 nM, respectively. We also tested the effect of timing of the APC treatment and showed that 1 hour pre-treatment or concurrent APC treatment were protective, but APC administered one hour after the adenovirus exposure was substantially less protective. This suggested that APC exerts its protective actions on endothelial cells either by interfering with early steps in the interaction of the vector with the cells, (e.g., vector entry) or by modulating death signaling pathways. It has been proposed that APC protects against cell damage in sepsis by interaction with the endothelial cell protein C receptor (EPCR) and protease activated receptor 1 (PAR1) on the endothelial cell surface to induce MCP-1 and other immunomodulatory genes by proteolytic signaling (Riewald et al., Science296:1880–1882, 2002). Other investigators have shown protective effects of APC for endothelial cells subjected to hypoxia through normalization of levels of p53, Bax, and Bcl-2 gene expression (Cheng et al., Nat Med9:338–342, 2003). The APC concentrations in our experiments that were maximally protective (50–100 nM) were of the same order of magnitude as was shown to be protective in vitro by these investigators. If APC can be shown to have a protective effect against adenovirus-induced endothelial cell toxicity and DIC in vivo, this may be a useful therapeutic strategy to explore as treatement of gene therapy vector toxicity. Cell Viability vs. APC Concentration Cell Viability vs. APC Concentration


Sign in / Sign up

Export Citation Format

Share Document