scholarly journals Development and radiographical evaluation of floating tablets with combination of Amoxicillin Trihydrate and Ranitidine Hydrochloride

2019 ◽  
Vol 10 (2) ◽  
pp. 1489-1499
Author(s):  
Parepalli Srikanth ◽  
Hemalatha S ◽  
Suggala Venkata Satyanarayana

Stomach Specific Floating Tablets (SSFT) with a combination of Amoxicillin-Trihydrate (AT) and Ranitidine Hydrochloride (RH) were developed by using different grades of Hydroxypropylmethylcellulose (HPMCK) (i.e.HPMCK 100M, HPMCK4M and HPMCK15M), to treat patients with H. pylori-infected duodenal ulcer. Floating tablets were prepared by direct compression method, developed formulations were evaluated for different pre-compression and post-compression parameters like angle of repose, compressibility index, hardness, weight variation, floating lag time, content uniformity, and in-vitro drug release. In-Vitro release of two drugs (Amoxicillin-Trihydrate and Ranitidine hydrochloride) from the developed formulation was estimated by the Simultaneous Estimation method (Vierordt's Method). The optimized formulation was subjected to Radio graphical evaluation by incorporating the BaSO4, a radio-opaque substance by replacing a part of the drug from the optimized formulation of into the formulation and then it was administered to the healthy human volunteers to find out the in-vivo residence time. In-vivo X-ray studies were conducted both in fed condition, as well as fasted condition the optimized formulation showed a gastric residence time of more in fed state than that of fasting state. From these studies it was clearly observed that the floating tablets should be given to patients after a standard food and with frequent intake of water.

2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Author(s):  
RASHMITHA V ◽  
MADHUSUDAN RAO Y ◽  
PAVANI S

Objective: The purpose of this research was to develop a fenoverine gastroretentive drug delivery system which, following oral administration should have the ability to enhance and prolong the period of gastric residence time (GRD) with the desired in vitro release profile. Methods: In the present study, fenoverine floating tablets were prepared using an effervescent method using sodium bicarbonate and citric acid as a gas-generating agent. The tablets were formulated using direct compression technology using xanthan gum and sodium alginate as polymers. Pre-compression powders were evaluated for angle of repose, bulk density, tapped density, Carr’s index, and Hausner’s ratio, and the prepared tablets were evaluated for weight variation, thickness, diameter, hardness, friability, drug content, floating lag time, total floating time, and in vitro dissolution studies. The formulations were optimized for the different concentrations of xanthan gum, sodium alginate, and their combinations. Results: All the prepared formulations showed well in vitro buoyancy. The tablets remained buoyant for 6–12 h. The in vitro drug-release pattern of fenoverine floating tablets was adapted to different kinetic models with the highest regression to zero-order and Korsmeyer-Peppas, and the mechanism was found to be a Fickian mechanism. Conclusion: Out of all the formulations prepared, in vitro dissolution studies of the F4 formulation were found to be maximum than other batches, which exhibited desired sustained release time followed by acceptable floating properties.


Author(s):  
EMAN A. MAZYED ◽  
SHERIN ZAKARIA

Objective: The present investigation aims to formulate and evaluate proniosomes of clopidogrel bisulphate for improving its dissolution characteristics. Methods: The slurry method was used for the preparation of proniosomes of clopidogrel using cholesterol, sorbitan monostearate (Span 60) and maltodextrin as a carrier. Clopidogrel proniosomes were evaluated for their entrapment efficiency and in vitro drug release. The best formula (F1) that achieved maximum drug release was further evaluated by measurement of the angle of repose, morphological examination, determination of vesicle size, determination of zeta potential, Fourier transform infrared spectroscopy and differential thermal analysis. The in vivo behavior of the selected proniosomal formula (F1) was studied by measuring the antiplatelet activity in adult male mice. Results: The entrapment efficiency of clopidogrel proniosomes was in the range of 83.04±1.99 to 90.14±0.30. % drug released from proniosomal formulations was in the range of 79.73±0.35 to 97.70±1.10 % within 4 h. Clopidogrel proniosomes significantly enhanced the in vitro release of clopidogrel compared with the plain drug that achieved 61.77±2.22 % drug release. F1 significantly (p ≤ 0.001) increased the bleeding time and bleeding volume and significantly (p ≤ 0.05) prolonged prothrombin time and decreased prothrombin activity and increased the international normalized ratio (INR) compared to plain clopidogrel. Conclusion: The present investigation introduced proniosomes as a promising carrier for clopidogrel that could enhance its dissolution and pharmacological effect.


2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Hye jin

The objective of this study was to develop effective bioadhesive buccal bilayered tablets comprising of drug containing bioadhesive layer and drug free backing layer, expected to release the drug in unidirection for extended period of time. Tablets of ondansetron HCl were prepared by direct compression method using bioadhesive polymers like Carbopol 934P, Methocel K4M, Methocel K15M and Hydroxy propyl cellulose in different combinations and concentrations with backing layer of ethyl cellulose. Buccal tablets were evaluated by different parameters such as thickness, hardness, weight uniformity, content uniformity, swelling index, surface pH, ex vivo bioadhesive strength, ex vivo residence time, in vitro drug release, ex vivo drug permeation, stability studies in human saliva, in vivo mucoadhesive performance studies and FTIR studies. The modified in vitro assembly was used to measure the bioadhesive strength of tablets with fresh porcine buccal mucosa as model tissue. Bioadhesion strength was increased with increase in the concentration of carbopol. The tablets were evaluated for in vitro release in pH 6.6 phosphate buffer for 8 hr in standard dissolution apparatus. In order to improve the permeation of the drug, tauroglycholate (permeation enhancer) added in the optimized formulation at 10mM concentration. In order to determine the mode of release, the data was subjected to Korsmeyer and Peppas diffusion model. The optimized formula followed non-fickian release mechanism with zero order kinetics. Carbopol 934P and HPC in the ratio of 3:1 could be used to design effective and stable buccoadhesive tablets of ondansetron HCl. The present study concludes that buccal delivery of ondansetron HCl tablets can be good way to bypass the first pass metabolism.


Author(s):  
Mona Semalty ◽  
Ajay Semalty ◽  
Ganesh Kumar ◽  
Vijay Juyal

For improving bioavailability in controlled release fashion and to circumvent the hepatic first pass effect of glipizide mucoadhesive buccal films of glipizide were prepared by solvent casting technique. Buccal films were prepared using hydroxy propylmethylcellulose, sodium carboxymethylcellulose, carbopol-934P and Eudragit RL-100. Films were evaluated for their weight, thickness, surface pH, swelling index,       in vitro residence time, folding endurance, in vitro release, ex vivo permeation studies and drug content uniformity. The films exhibited controlled release over more than 6 h. From the study it was concluded that the films containing 5 mg glipizide in 4.9 % w/v hydroxy propylmethylcellulose and 1.5 % w/v sodium carboxymethylcellulose exhibited satisfactory swelling, an optimum residence time and promising drug release thus proved to be potential candidate for the development of buccal films for therapeutic use.


2018 ◽  
Vol 10 (2) ◽  
pp. 76 ◽  
Author(s):  
Shereen Ahmed Sabry

Objective: The purpose of this study was to design and formulate mucoadhesive buccal patches of sodium cromoglycate (SCG) as an alternative way to overcome its poor oral absorption and short half-life.Methods: Mucoadhesive patches were prepared by solvent casting technique using cellulose acetate butyrate (CAB) alone or in combination with mucoadhesive polymers like SCMC (sodium carboxymethyl cellulose), HPMC 100M (hydroxyl propyl methyl cellulose) and Cbp934P (carbopol) in different concentrations. The successful patches were evaluated for thickness, weight variation, folding endurance, tensile strength, drug content, surface pH, moisture uptake, swelling percentage, mucoadhesion strength, residence time, in vitro release study, ex vivo permeation and in vivo pharmacokinetic studies.Results: The thickness of all prepared patches ranged from 0.210±0.006 to0.355±0.012, folding endurance was more than 300, weight variation did not exceed 0.179±0.015, tensile strength and % elongation ranged from 6.4±0.018 to 13.1±0.024, and from 30.4±0.88 to 53.4±0.78respectively. The swelling percentage after one hour was from 20.8±0.99 to 53.2±1.5. pH of all prepared patches did not exceed 6.8, the drug content was about 99 to 101%, moisture uptake did not exceed 10%. Mucoadhesion strength and residence time ranged from 17.2±0.14 to 51.2±0.26, and from 3.35±0.25 to 7.45±0.28 respectively. The cumulative release percentage of SCG was in the following descending order CAB>CAB with Cbp934P>CAB with HPMC>CAB with SCMC. The optimized patch (F9) decreased the Cmax and increased Tmax compared to the parenteral solution.Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to prolong the release of SCG and enhance its poor oral bioavailability.


Author(s):  
Biswajit Basu ◽  
Kevin Garala ◽  
Thimmasetty J

Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. Pimozide patches were prepared using HPMC (15 & 47 cPs), carbopol 934, poly vinyl alcohol, and poly vinyl pyrolidone. FTIR and UV spectroscopic methods revealed that there is no interaction between pimozide and polymers. The patches were evaluated for their thickness uniformity, folding endurance, weight uniformity, content uniformity, swelling behaviour, tensile strength, and surface pH. In vitro release studies of pimozide-loaded patches in phosphate buffer (pH, 6.6) exhibited drug release in the range of 55.32 % to 97.49 % in 60 min. Data of in vitro release from patches were fit in to different equations and kinetic models to explain release kinetics. The models used were zero and first-order equations, Hixon-Crowell, Higuchi and Korsmeyer-Peppas models. In vivo absorption of pimozide from all the patches ranged from 47.96 % to 83.42 % in 60 min in human volunteers. In vivo studies in rabbits showed 85.97% of drug absorption from HPMC-15 cPs patch in 60 min. Good correlation among in vitro release and in vivo absorption of pimozide was observed


2020 ◽  
Vol 11 (6) ◽  
pp. 373-386
Author(s):  
Ishwor Poudel ◽  
Manjusha Annaji ◽  
Robert D Arnold ◽  
Amal Kaddoumi ◽  
Nima Shamsaei ◽  
...  

Aim: Additively manufactured (3D printed), stainless steel implants were coated with dexamethasone using gelatin, chondroitin sulfate for use in bone graft surgeries. Materials & methods: The drug and polymers were deposited on the implants with a rough surface using a high precision air brush. The gelatin-chondroitin sulfate layers were cross-linked using glutaraldehyde. Results: The drug content uniformity was within 100 ± 5%, and the thickness of the polymer layer was 410 ± 5.2 μm. The in vitro release studies showed a biphasic pattern with an initial burst release followed by slow release up to 3 days. Conclusion: These results are very promising as the slow release implants can be further tested in vivo in large animals, such as cattle and horses to prevent the inflammatory cascade following surgeries.


Author(s):  
E. E. Zien El-Deen ◽  
H. A. Yassin

Gabapentin is effective against post-traumatic spinal injury-induced neuropathic pain. It requires high dosage and frequency in the management of neuropathic pain. The present research work was an attempt to formulate and evaluate gabapentin gastro-retentive tablets to prolong gastric residence and increase drug absorption and further increase bioavailability. The floating tablets of gabapentin were prepared in two doses (300 and 600 mg) by using two polymers (hydroxyl propyl methyl cellulose and hydroxyl propyl cellulose). Immediate release tablets of gabapentin containing the same doses were prepared and used as reference formulations. The physicochemical characteristics of the prepared tablets were determined (drug content, weight variation, friability, hardness, thickness and diameter).  Drug release from the prepared tablets was followed and found that by increasing drug concentration in the tablets release rate increases. Floating tablets showed prolonged drug release (over 96%) to more than 15 hrs. Immediate release tablets showed over 97% drug release within 48 min. In-vivo results showed that plasma exposure to gabapentin in animals receiving the drug does not dose proportional and therefore may not reach therapeutically useful levels. AUC0-24 and Cmax in case of 300 mg tablets are more than those in case of 600 mg tablets. The in-vivo release of gabapentin does not correlate with the in-vitro release of the drug.


Author(s):  
SHIREESH KIRAN R ◽  
CHANDRA SHEKAR B ◽  
NAGENDRA BABU B

Objective: The present research work concerns the development of the extended release of Ritonavir floating matrix tablets, designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects of irritating drugs. Methods: The floating tablets of Ritonavir were prepared by direct compression method using different grades of hydroxypropyl methylcellulose (HPMC), crospovidone, Polyox WSR 303, and sodium bicarbonate, as gas generating agent. Evaluation parameters and in vivo radiographic studies were conducted in suitable model. Results: Among all formulations, F21 was chosen as optimized formulation based on evaluation parameters such as floating lag time (33 s), total floating time (>24 h), and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product were shown 98.67% and 91.46±5.02% of drug release, respectively. The main appliance of medication discharge follows zero-order kinetics and non- Fickian transport by coupled diffusion and erosion. In vivo experiments maintained the potentials in extending the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time of the optimized formulation found to be 330 min±40 in the stomach, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for enhanced bioavailability. Conclusion: From in vitro and in vivo radiographic studies, Ritonavir floating tablets estimated to provide novel choice for harmless, inexpensive, and extended release for the effective management of AIDS.


Sign in / Sign up

Export Citation Format

Share Document