scholarly journals Invitro Designing of Fluvastatin Chrono Formulation

2021 ◽  
Vol 12 (1) ◽  
pp. 544-552
Author(s):  
Swetha M ◽  
Suresh Kumar J.N. ◽  
Satyavathi D

The objective was to improve fluvastatin prescribed pulsatile release formulation to get the disintegrative and ruptured lag-time mechanism with a fixed time delay which matches the chronotherapeutics (hypercholesteroidal disorder). Pre formulation studies UV, FTIR (Drug excipient compatibility), solubility studies and flow properties were evaluated for blend and drug. All the values were within the limit. 12 core tablets were prepared with two novel disintegrants, i.e. ludiflash, lycoat in different concentrations after doing the post-compression parameters & drug release F8 was optimized & then coated with PH sensitive polymers HPMC K200M & Ethylcellulose in different concentrations. An evaluation was carried out for all six formulations, and all the values were within the limit. Based on In-vitro dissolution studies, swelling index and rupture test C5F8 is optimized and compared with the marketed product for 10 hours. As per the ICH guidelines optimized formulation (C5F8), stability tests were conducted for three months and was found to be stable. Optimized formulation (C5F8) contains 3:2 polymers (HPM K200M: Ethylcellulose) demonstrates an outstanding pulsatile drug delivery relative to the branded version (Lexcol XL) compared to all other formulations.

Author(s):  
A. Y. Kanugo ◽  
N. I. Kochar ◽  
A. V. Chandewar

The goal of present work was to investigate the effects of rupturable material ethyl cellulose combines with erodible material Klucel EXF on the pulsatile release pattern of Candesartan cilexetil in order to prevent morning rise in blood pressure. A tablet prepared by compression coating method contains core and coat components. Core consists of active ingredients with its various superdisintegrants where as coat contains different grades of ethyl cellulose and Klucel HXF in various combinations. All these tablets were evaluated for its micromeritics, weight variations, hardness, friability and in vitro dissolution testing. Drug-excipients interactions were carried out by FTIR. Dissolution studies were carried out in simulated gastric fluid followed by phosphate buffer of pH 6.5. The optimized formulation PT6 which give lag time of 6 hrs and released 99.10 % within 7 hr, as well as found to be stable in ICH stability testing guidelines.


Author(s):  
Kumari P.V. Kamala ◽  
Mounica V. ◽  
Rao Y. Srinivasa

Pulsatile drug delivery system is one type of drug delivery system, where the delivery device is capable of releasing drugs after a predetermined time-delay (i.e. lag time). This system has a peculiar mechanism of delivering the drug rapidly and completely after a "lag time," i.e., a period of "no drug release." These systems are beneficial for drugs having high first-pass effect drugs administered for diseases that follow chrono pharmacological behavior such as drugs having specific absorption sites in GIT, targeting to colon; and cases where nighttime dosing is required. The objective of the present study was to formulate and evaluate a press coated pulsatile drug delivery system of simvastatin in order to attain a time controlled release to lower the blood cholesterol level by releasing the drug with a distinct predetermined lag time of five hrs. Simvastatin is a water insoluble drug and its absorption is dissolution rate limited. The core formulations were composed of simvastatin and disintegrants like lycoat, SSG, ludiflash in different ratios and was coated with xanthan gum, guar gum, HPMC K4M, HPMC K15M as a release modifier. Press coated tablets were evaluated for hardness, friability, drug content, and in vitro drug release. Result of in vitro dissolution study of the prepared tablet suggested that, the release of drug from press coated tablets match with chrono-biological requirement of disease.


2020 ◽  
Vol 10 (6) ◽  
pp. 6669-6675

The main purpose of this study was to develop and validate an efficient HPLC/UV method for determination of valsartan and atenolol and to introduce the dissolution profiles of tablets; The resolution of peaks was best achieved with Zorbax C8 (4.6 mm i.d. X 150 mm, 5 μm) column. Samples were chromatographed in a isocratic mode (methanol and 25 mM solution potassium dihydrogen phosphate pH 7.3 (55:45, V/V)), pumped with 1.0 mL/min at 40 °C set temperature of column oven, with UV detector set to 225 nm wavelength; The total chromatographic run time was 6 minutes. The retention time of valsartan is 1.753 min, atenolol – 3.064 min. Linearity was examined and proven at different concentration levels in the range of working concentration of valsartan ( 0.16-0.96 mg/mL) and atenolol (0.2–1.2 mg/mL). The high value of recoveries obtained for valsartan and atenolol indicates that the proposed method was found to be accurate. In all three dissolution media the releases of valsartan and atenolol are more than 85% in 15 min A rapid, simple, accurate, selective, and sensitive method was developed for the determination of valsartan and atenolol in dosage forms. The method was strictly validated according to the ICH guidelines. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for routine quality control of drugs and in vitro dissolution study.


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


Author(s):  
R. Nagaraju ◽  
Rajesh Kaza

Salbutamol and theophylline are available in conventional dosage forms, administered four times a day, leading to saw tooth kinetics and resulting in ineffective therapy. The combination of these two drugs in a single dosage form will enhance the patient compliance and prolong bronchodilation. Various polymers, such as hydroxy propyl methylcellulose K4M (HPMC- K4M), hydroxy propyl methylcellulose K100M (HPMC- K100M), xanthan gum, ethyl cellulose and hydroxy propyl methylcellulose phthalate (HPMC-P) were studied. HPMC-P and HPMC- K4M were found to be best in controlling the release. In-vitro dissolution studies were carried out for all the bi-layered tablets developed using USP dissolution apparatus type 2 (paddle). It was found that the tablet FB15-FW3 showed 50% release of salbutamol in first hour and the remaining was released for eight hours. However, theophylline was found to be released as per the USP specifications. The IR spectrum was taken for FB15-FW3 formulation and it revealed that there is no disturbance in the principal peaks of pure drugs salbutamol and theophylline. This further confirms the integrity of pure drugs and no incompatibility of them with excipients. Also, formulation of FB15-FW3 has shown required release pattern and complies with all the evaluated parameters and comparable to the marketed formulation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 507
Author(s):  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Alejandro Ruiz-Picazo ◽  
Marta Gonzalez-Alvarez ◽  
...  

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 363
Author(s):  
Claudia Miranda ◽  
Alexis Aceituno ◽  
Mirna Fernández ◽  
Gustavo Mendes ◽  
Yanina Rodríguez ◽  
...  

The biopharmaceutical classification system (BCS) is a very important tool to replace the traditional in vivo bioequivalence studies with in vitro dissolution assays during multisource product development. This paper compares the most recent harmonized guideline for biowaivers based on the biopharmaceutics classification system and the BCS regulatory guidelines in Latin America and analyzes the current BCS regulatory requirements and the perspective of the harmonization in the region to develop safe and effective multisource products. Differences and similarities between the official and publicly available BCS guidelines of several Latin American regulatory authorities and the new ICH harmonization guideline were identified and compared. Only Chile, Brazil, Colombia, and Argentina have a more comprehensive BCS guideline, which includes solubility, permeability, and dissolution requirements. Although their regulatory documents have many similarities with the ICH guidelines, there are still major differences in their interpretation and application. This situation is an obstacle to the successful development of safe and effective multisource products in the Latin American region, not only to improve their access to patients at a reasonable cost, but also to develop BCS biowaiver studies that fulfill the quality standards of regulators in developed and emerging markets.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2021 ◽  
Vol 11 (5) ◽  
pp. 13089-13101

In this study, a sustainable HPLC-UV-DAD method was developed and validated for the determination of allopurinol in tablets and optimization of the dissolution test using factorial design. The separation of the analyte from the sample matrix was achieved in 3.01 minutes in a C8 column (4.6 mm X 150 mm X 5 μm), using mobile phase 0.1 mol L-1 HCl (25%) + ethanol (50%) + ultrapure water (25%) by UV detection at 249 nm. The method presented satisfactory analytical parameters of validation (specificity, selectivity, linearity, stability, precision, accuracy, and robustness), showing no matrix effects. The dissolution test was optimized by complete factorial design 23 and, the optimal conditions were: HCl 0.001 mol L-1, apparatus II (paddle) and 75 rpm. The analytical procedures and dissolution tests were applied to allopurinol tablets marketed in Bahia, Brazil, to evaluate the dissolution studies. The pharmaceuticals had similar dissolution profiles and first-order dissolution kinetics. This new and sustainable HPLC-UV-DAD method is friendly to the environment and can be used for the routine pharmaceutical analysis of allopurinol in fixed dosage forms.


Sign in / Sign up

Export Citation Format

Share Document