scholarly journals Inter-annual variations of 6.5-day planetary waves and their relations with QBO

2022 ◽  
Vol 6 (0) ◽  
pp. 0-0
Author(s):  
Ying-Ying Huang ◽  
◽  
◽  
Jun Cui ◽  
Hui-Jun Li ◽  
...  
Tellus ◽  
1968 ◽  
Vol 20 (3) ◽  
pp. 548-550 ◽  
Author(s):  
Robert E. Dickinson

2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 689
Author(s):  
Rudolf Brázdil ◽  
Kateřina Chromá ◽  
Tomáš Púčik ◽  
Zbyněk Černoch ◽  
Petr Dobrovolný ◽  
...  

In the Czech Republic, tornadoes may reach an intensity of F2 and F3 on the Fujita scale, causing “considerable” to “severe” damage. Documentary evidence is sufficient to allow the creation of a chronology of such events, from the earliest recorded occurrence in 1119 CE (Common Era) to 2019, including a total of 108 proven or probable significant tornadoes on 90 separate days. Since only 11 significant tornadoes were documented before 1800, this basic analysis centers around the 1811–2019 period, during which 97 tornadoes were recorded. Their frequency of occurrence was at its highest in the 1921–1930, 1931–1940, and 2001–2010 decades. In terms of annual variations, they took place most frequently in July, June, and August (in order of frequency), while daily variation favored the afternoon and early evening hours. Conservative estimates of human casualties mention 8 fatalities and over 95 people injured. The most frequent types of damage were related to buildings, individual trees, and forests. Tornadoes of F2–F3 intensity were particularly associated with synoptic types characterized by airflow from the western quadrant together with troughs of low pressure extending or advancing over central Europe. Based on parameters calculated from the ERA-5 re-analysis for the period of 1979–2018, most of these tornadoes occurred over a wide range of Convective Available Potential Energy (CAPE) values and moderate-to-strong vertical wind shear. The discussion herein also addresses uncertainties in tornado selection from documentary data, the broader context of Czech significant tornadoes, and the environmental conditions surrounding their origins.


2021 ◽  
Vol 117 ◽  
pp. 107121 ◽  
Author(s):  
Madeleine Cockerill ◽  
Andrew P. Bassom ◽  
Lawrence K. Forbes

2021 ◽  
Vol 13 (11) ◽  
pp. 2193
Author(s):  
Deepakrishna Somasundaram ◽  
Fangfang Zhang ◽  
Sisira Ediriweera ◽  
Shenglei Wang ◽  
Ziyao Yin ◽  
...  

Addressing inland water transparency and driver effects to ensure the sustainability and provision of good quality water in Sri Lanka has been a timely prerequisite, especially under the Sustainable Development Goals 2030 agenda. Natural and anthropogenic changes lead to significant variations in water quality in the country. Therefore, an urgent need has emerged to understand the variability, spatiotemporal patterns, changing trends and impact of drivers on transparency, which are unclear to date. This study used all available Landsat 8 images from 2013 to 2020 and a quasi-analytical approach to assess the spatiotemporal Secchi disk depth (ZSD) variability of 550 reservoirs and its relationship with natural (precipitation, wind and temperature) and anthropogenic (human activity and population density) drivers. ZSD varied from 9.68 cm to 199.47 with an average of 64.71 cm and 93% of reservoirs had transparency below 100 cm. Overall, slightly increasing trends were shown in the annual mean ZSD. Notable intra-annual variations were also indicating the highest and lowest ZSD during the north-east monsoon and south-west monsoon, respectively. The highest ZSD was found in wet zone reservoirs, while dry zone showed the least. All of the drivers were significantly affecting the water transparency in the entire island. The combined impact of natural factors on ZSD changes was more significant (77.70%) than anthropogenic variables, whereas, specifically, human activity accounted for the highest variability across all climatic zones. The findings of this study provide the first comprehensive estimation of the ZSD of entire reservoirs and driver contribution and also provides essential information for future sustainable water management and conservation strategies.


2020 ◽  
Vol 1690 ◽  
pp. 012029
Author(s):  
E N Alexeev ◽  
A M Gangapshev ◽  
Yu M Gavrilyuk ◽  
A M Gezhaev ◽  
V V Kazalov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document