scholarly journals EFFECTS OF WELDING CURRENT AND SPEED ON RESIDUAL STRESS AND DISTORTION OF JOINING ST52 ROLLED PLATE IN DIFFERENT WELDING SEQUENCES

2020 ◽  
Vol 3 (2) ◽  
pp. 40-45
Author(s):  
Ali Aminifar ◽  
Alireza M. Haghighi

Welding is a process of permanent joining parts by different welding methods. Residual stress and distortion are the most common phenomena of this process. Reduction of the residual stresses, distortion and improving the quality of welding are the important subjects of this field. Determining and analyzing the residual stresses and distortion is the main step for these purposes. Welding sequences, speed and current are the most effective parameters of this process. In this study, effects of welding parameters such as welding speed and current, in order to reduce residual stress and distortion of welding ST52 rolled plate in different welding sequences have been studied with three-dimensional thermo-mechanical finite element model by means of ANSYS APDL. By comparing different considered situations, the most efficient welding methods with the least residual stress and distortion by considering different welding sequences have been suggested. It obtains that welding the ST52 rolled plate from edge to edge with higher current and lower speed is the best option in fatigue and load-bearing situations, and welding from the center to both sides simultaneously with lower current and higher speed is the best option for assembly problems.

2008 ◽  
Vol 575-578 ◽  
pp. 763-768
Author(s):  
Afzaal M. Malik ◽  
Ejaz M. Qureshi ◽  
Naeem Ullah Dar

The research work presents a computational methodology based on three-dimensional finite element model to simulate the gas tungsten arc welding (GTAW) of thin-walled cylinders. The aim was to study the effects of two basic welding parameters (welding speed and welding current) on weld induced residual stresses. The complex phenomenon of arc welding was numerically solved by sequentially coupled transient, non-linear thermo-mechanical analysis. The accuracy of the numerical model was validated through experiments for temperature distribution and residual stresses. The results reveals that the present simulation strategy can be used as a proper tool to get the optimized welding process parameters and minimize the in service failures of thinwalled structures due to residual stresses.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


2011 ◽  
Vol 219-220 ◽  
pp. 1211-1214
Author(s):  
Wei Jiang

Finite element simulation is an efficient method for studying factors affecting weld-induced residual stress distributions. In this paper, a validated three-dimensional finite element model consisting of sequentially coupled thermal and structural analyses was developed. Three possible symmetrical welding sequences, i.e. one-welder, two-welder and four-welder sequence, which were perceived to generate the least distortion in actual welding circumstances, were proposed and their influences on the residual stress fields in a thick-walled tee joint were investigated. Appropriate conclusions and recommendations regarding welding sequences are presented.


2011 ◽  
Vol 189-193 ◽  
pp. 2196-2199
Author(s):  
Ling Li Meng ◽  
Yan Qun Huang ◽  
Ming Liu

Since it is inconsistent and uncontrollable in the experiment, any variance in specimen dimensions, welding parameters and testing conditions will influence the consistency of testing results to some extent. In this paper, the Finite Element Method(FEM) is employed to solve this problem. A three-dimensional finite element model is established to simulate the deformation of I-steel during gas tungsten arc welding (TIG) with FEM software, which is set up to analysis the deformation of I-steel with different welding sequences.


2014 ◽  
Vol 501-504 ◽  
pp. 1166-1169
Author(s):  
Jia Liu ◽  
Run Chang Zhang ◽  
Wei Lian Qu ◽  
Li Jiang

The distributed properties of residual stress in bridge nodes have been investigated in the paper. Based on some bridge node, the three dimensional thermodynamics finite element model has been established, meanwhile, the double ellipsoidal distributed heat source model are used to simulate the whole welding procedure of bridge nodes according to the welding parameters. Thus, the distributed regularities of residual stress of bridge node have been obtained. Simulating results show that the residual stresses distribute uniformly in the welding direction, and the max value reaches the yield strength of steel Q345qD. Besides, the residual stress in the lateral direction reaches the max value in the place of welding district, and decreases rapidly when far away from the welds.


2008 ◽  
Vol 43 (2) ◽  
pp. 109-119 ◽  
Author(s):  
W Jiang ◽  
K Yahiaoui

A sequentially coupled three‐dimensional thermomechanical finite element model has been developed to predict residual stress distributions in a multipass welded piping branch junction. The residual stresses at the branch and run pipe cross‐sections, as well as along the circumferential weldlines on the outer surfaces of both the run and the branch pipes and on the inner surface of the branch pipe, are predicted. Three levels of interpass temperature have been selected to investigate their effect on the peak residual stresses. It is revealed that the interpass temperature has a significant effect on the residual stresses. As the interpass temperature is increased, both the peak hoop and the axial residual stresses at the run and branch cross‐sections decrease. The peak normal stresses along the circumferential weldline on the outer surface of the run pipes are also reduced. However, increasing the interpass temperature had a negligible effect on the peak tangential residual stresses along the circumferential weld line on the inner surface of the branch pipe. The results presented and the modelling technique described in the current study can be used towards formulating a recommendation to optimize residual stress profiles in multipass welded complex geometries through better interpass temperature control.


Author(s):  
M Sedighi ◽  
J MosayebNezhad

In this study, the influence of welding parameters on the distribution of residual stress in magnetically impelled arc butt welded joints was investigated. As major contributing factors to the quality of weldments and residual stress, welding time and welding upsetting pressure were focal points of this work. Experimentally verified thermal-metallurgical and mechanical finite element model was used for conducting this purpose. The effects of phase change including volumetric phase change and transformation plasticity were considered in the numerical model. Based on the numerical simulation it was observed that for instance by increasing upset pressure from 0 to 130 MPa, axial residual stresses have reduced from −210 MPa to −119 MPa, while by increasing welding time from 4 to 6 s, these stresses have increased from −119 MPa to −138 MPa on the outer surface of the weld line.


2010 ◽  
Vol 44-47 ◽  
pp. 581-585
Author(s):  
Lei Wang ◽  
Qi Lin Zhang ◽  
Lu Chen

A thermal-mechanical coupled finite element model has been presented to predict residual and thermal stresses during different stages of stud welding. The finite study was carried out using three-dimensional models. To enhance the accuracy of the numerical solution material properties including physical, thermal and mechanical properties supposed to be temperature-dependent. After the temperature distributions as a result of welding were calculated, thermal and residual stress values obtained. Residual stresses are attributed to the elasto-plastic response of the object towards the transient thermal stresses generated by the welding. After all temperature values reach the room temperature, the residual stresses decrease to a small value.


2018 ◽  
Vol 53 (4) ◽  
pp. 210-224 ◽  
Author(s):  
Michele Barsanti ◽  
Marco Beghini ◽  
Ciro Santus ◽  
Alessio Benincasa ◽  
Lorenzo Bertelli

The ring-core technique allows for the determination of non-uniform residual stresses from the surface up to relatively higher depths as compared to the hole-drilling technique. The integral method, which is usually applied to hole-drilling, can also be used for elaborating the results of the ring-core test since these two experimental techniques share the axisymmetric geometry and the 0°–45°–90° layout of the strain gage rosette. The aim of this article is to provide accurate coefficients which can be used for evaluating the residual stress distribution by the ring-core integral method. The coefficients have been obtained by elaborating the results of a very refined plane harmonic axisymmetric finite element model and verified with an independent three-dimensional model. The coefficients for small depth steps were initially provided, and then the values for multiple integer step depths were also derived by manipulating the high-resolution coefficient matrices, thus showing how the present results can be practically used for obtaining the residual stresses according to different depth sequences, even non-uniform. This analysis also allowed the evaluation of the eccentricity effect which turned out to be negligible due to the symmetry of the problem. An applicative example was reported in which the input of the experimentally measured relaxed strains was elaborated with different depth resolutions, and the obtained residual stress distributions were compared.


Author(s):  
W Zhuang ◽  
B Wicks

Low-plasticity burnishing (LPB) is a surface modification process involving complex cyclic plastic deformation that results in the development of a deep residual stress field. In order to achieve an optimal LPB-induced residual stress field for the geometry appropriate to the aircraft engine component, the key parameters of the LPB process, such as burnishing load, burnishing ball size and material properties, need to be determined. For this purpose, a three-dimensional non-linear moving contact finite element model is proposed to simulate the multipass LPB process and to predict the effects of those parameters on the resultant residual stress field. The material constitutive model used in the finite element analysis has been developed from the cyclic stress/strain response obtained from experimental measurements on the material. Prediction of the LPB-induced residual stresses by the finite element model appears to agree reasonably well with X-ray diffraction measurements.


Sign in / Sign up

Export Citation Format

Share Document