scholarly journals THE POTENTIAL OF PALM OIL MILL EFFLUENT (POME) AS A RENEWABLE ENERGY SOURCE

2017 ◽  
Vol 1 (2) ◽  
pp. 09-11 ◽  
Author(s):  
Nur Izzah Hamna A. Aziz ◽  
Marlia M Hanafiah
2016 ◽  
Vol 14 (2) ◽  
pp. 96 ◽  
Author(s):  
Yulian Mara Alkusma ◽  
Hermawan Hermawan ◽  
H Hadiyanto

ABSTRAKEnergi  memiliki  peranan penting dalam proses pembangunan yang pada akhirnya untuk mencapai tujuan sosial,  ekonomi  dan  lingkungan  untuk  serta  merupakan  pendukung bagi kegiatan  ekonomi  nasional. Sumber energi terbarukan yang berasal dari pemanfaatan biogas limbah cair kelapa sawit dapat menghasilkan energi listrik yang saat ini banyak bergantung pada generator diesel dengan biaya yang mahal.Limbah cair kelapa sawit (Palm Oil Mill Effluent atau POME) adalah limbah cair yang berminyak dan tidak beracun, berasal dari proses pengolahan minyak kelapa sawit, namun limbah cair tersebut dapat menyebabkan bencana lingkungan apabila tidak dimanfaatkan dan dibuang di kolam terbuka karena akan melepaskan sejumlah besar gas metana dan gas berbahaya lainnya ke udara yang menyebabkan terjadinya emisi gas rumah kaca. Tingginya kandungan Chemical Oxygen Demand (COD) sebesar 50.000-70.000 mg/l dalam limbah cair kelapa sawit memberikan potensi untuk dapat di konversi menjadi listrik dengan menangkap biogas (gas metana) yang dihasilkan melalui serangkaian tahapan proses pemurnian. Di Kabupaten Kotawaringin Timur terdapat 36 Pabrik Pengolahan Kelapa Sawit yang total kapasitas pabriknya adalah sebesar 2.115 TBS/jam, menghasilkan limbah cair sebesar 1.269 ton limbah cari/jam dan mampu menghasilkan 42.300 m3 biogas.Kata kunci:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, Methane. ABSTRACTEnergy has an important role in the development process and ultimately to achieve the objectives of social, economic and environment for as well as an environmental support for national economic activity. Renewable energy source derived from wastewater biogas utilization of oil palm can produce electrical energy which is currently heavily dependent on diesel generators at a cost that mahal.Limbah liquid palm oil (Palm Oil Mill Effluent, or POME) is the wastewater that is greasy and non-toxic, derived from the processing of palm oil, but the liquid waste could cause environmental disaster if not used and disposed of in open ponds because it will release large amounts of methane and other harmful gases into the air that cause greenhouse gas emissions. The high content of Chemical Oxygen Demand (COD) of 50000-70000 mg / l in the liquid waste palm oil provides the potential to be converted into electricity by capturing the biogas (methane gas) produced through a series of stages of the purification process. In East Kotawaringin there are 36 palm oil processing factory that total factory capacity is of 2,115 TBS / hour, producing 1,269 tons of liquid waste wastewater / h and is capable of producing 42,300 m3 of biogas.Keywords:  Renewable Energy, Plam Oil Mill Effluent, Chemical Oxygen Demand, Biogass, MethaneCara sitasi: Alkusma, Y.M., Hermawan, dan Hadiyanto. (2016). Pengembangan Potensi Energi Alternatif dengan Pemanfaatan Limbah Cair Kelapa Sawit sebagai Sumber Energi Baru Terbarukan di Kabupaten Kotawaringin Timur. Jurnal Ilmu Lingkungan,14(2),96-102, doi:10.14710/jil.14.2.96-102


2015 ◽  
Vol 72 (7) ◽  
pp. 1089-1095 ◽  
Author(s):  
U. Hasanudin ◽  
R. Sugiharto ◽  
A. Haryanto ◽  
T. Setiadi ◽  
K. Fujie

The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m3 pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4–40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41–175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95–1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.


Jurnal Zona ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 50-59
Author(s):  
Antoni Antoni ◽  
Yusni Ikhwan Siregar ◽  
Suwondo Suwondo

The development of the palm oil industry in Indonesia is growing rapidly, including the increasing number of palm oil processing factories and their liquid waste which has an impact on increasing the amount of greenhouse gases through methane gas. This research was conducted to determine the strategy in utilizing the effluent palm oil mill as a sustainable energy source in the palm oil mill of PT. MSSP of Siak Regency. Utilization of palm oil mill effluent as biogas fuel is carried out using covered lagoon reactor pond technology and serves to reduce the emission value of 1,365.90 tons of CH4 during 2019 and to function in economic efficiency from the use of sustainable energy or biogas for companies by Rp. 8,109,598,450 and socially functioning for employees and the community around PT. MSSP is a positive perception, both in lightening the work of employees and reducing the will in community settlements. The strategy carried out in the utilization of palm oil mill effluent as a sustainable energy source at PT. MSSP aims at good and proper management and application. The strategy was formulated in the SWOT analysis by compiling strengths, weaknesses, opportunities and threats in the application of the utilization of palm oil mill effluent as a sustainable energy source.


2021 ◽  
Vol 920 (1) ◽  
pp. 012037
Author(s):  
J B Tan ◽  
N A Lutpi ◽  
Y S Wong ◽  
N R Rahmat ◽  
Chairat Siripatana

Abstract The world has been using fossil fuels to generate energy for centuries and has had adverse effects on the environment; hence renewable energy needs to be discovered and developed. Biohydrogen production is renewable energy since it emits no greenhouse gases and may provide clean energy. Therefore, this study aimed to investigate the optimum headspace ratio and biohydrogen production for suspended and immobilized cells using Palm Oil Mill Effluent (POME) as the fermentation substrate, while its anaerobic sludge acted as the inoculum. Five different ratios were investigated, which are 0.2, 0.3, 0.4, 0.5, and 0.6. These are equivalent to working volume (WV) of 80 mL, 70 mL, 60 mL, 50 mL, and 40 mL, respectively. The solution contained 10 % of inoculum and 90 % (v/v) of the feedstock. For immobilized cells, additional of glass beads as carrier material was added into the solution, using the ratio of 1:1 for anaerobic sludge (mL) to support carrier (g). The kinetic study was investigated using a modified Gompertz equation whereby for suspended cells, the best ratio was 0.3, with the highest biohydrogen concentration of 357.6 ppm. Meanwhile, the optimum ratio for the immobilized cell was 0.2, with the highest biohydrogen concentration of 479.3 ppm. Based on the kinetic studies, the kinetic parameters for suspended cells were: Hm = 89.8 mL, Rm = 6.8 mL/h, and λ = 0.1 hr. Meanwhile for immobilized cell, the kinetic parameters were: Hm = 73.6 mL, Rm = 6.9 mL/h and X λ 0 hr. In conclusion, selecting the suitable headspace ratio could affect the biohydrogen quality and improve the effectiveness of the production rate.


2021 ◽  
Vol 317 ◽  
pp. 04031
Author(s):  
Tiyo Agung Pambudi ◽  
Hadiyanto ◽  
Sri Widodo Agung Suedy

POME or palm oil mill effluent is currently still a waste problem that has not been utilized optimally. POME waste has the potential for renewable energy in the form of biogas, but some research results have shown that production is not optimal, so the addition of cow dung needs to be done to increase biogas production because methanogen bacteria found in cow dung help to maximize the anaerobic fermentation process and methane production. This research was conducted to determine the potential for biogas production from a mixture of POME and cow dung for 25 days by conducting a study of the biogas production process. The results of this study indicate that the biogas pressure increases with the addition of the loading rate, which is 101.102 N/m2/day to 101.107 N/m2/day with a daily biogas production of 0, 24247 liters/day with a total accumulation of biogas production for 25 days of 6.1 liters.


2012 ◽  
Vol 1 (2) ◽  
pp. 45-49 ◽  
Author(s):  
H Hadiyanto ◽  
Muhamad Maulana Azimatun Nur ◽  
Ganang Dwi Hartanto

Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source) and 1gr/l (high nitrogen source) at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day). Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.


Sign in / Sign up

Export Citation Format

Share Document