Pseudo-Dynamic and Quasi-Static Testing of an Irregular Steel Concrete Composite Frame with Wing Walls

2016 ◽  
Vol 16 (02) ◽  
pp. 1450095 ◽  
Author(s):  
Yongtao Bai ◽  
Guoliang Bai

This paper presents a series of pseudo-dynamic tests (PDTs) and quasi-static tests (QSTs) on a dual wing-walled frame system, represented here by a 1/7-scaled composite moment frame with steel reinforced concrete (SRC) columns and reinforced concrete (RC) wing walls. Special characteristics of this scaled system are irregular story layout, strong-beam weak-column mechanism and large axial load. A series of scaled El-Centro (NS) waves were used as the input ground motion for the PDTs, the results of which showed that the seismic behavior was significantly improved by the RC wing walls. With the strong-beam weak-column connections, severe damages sustained by the longitudinal wing walls (LWW) prevented the potential collapse of column, and the transverse wing wall (TWW) efficiently avoided the fragile shear failure of short columns and panel zone of beam-column joints. The failure mechanisms were identified indicating that wing walls improved the ductility for the bare frame. This study provides a solid experimental support on the evaluation of seismic behavior of irregular SRC frames with RC wing walls, which could be applied in the main factory buildings of thermal power plants (TPP).

2019 ◽  
Vol 15 (2) ◽  
pp. 142-153
Author(s):  
Ahmadreza Khodabandehlo ◽  
Mohamad Taghi Kazemi

AbstractWith spreading of population and increasing of instruction, and also because of limited resources and materials, the demand for using novel materials in building industry has increased. The reinforced concrete columns and steel beams are used in structures with composite moment frame (RCS). Use of compression strength in proportion with concrete and bending strength of steel beam has bestowed these structures less weight than that of concrete structures and made it easier to access the measure of strong column - weak beam especially within long span in these structures. The most important part of these structures is connection of steel beam with the reinforced concrete column. These connections are divided into two general groups of connection with bracing beam and with bracing column from the joint. This paper aims to study the seismic behavior and parameters of RCS composite frame composed of steel beams and strong concrete column. The finite element method was analyzed by ABAQUS software and data analyzed by Excel.


2018 ◽  
Vol 245 ◽  
pp. 07014 ◽  
Author(s):  
Evgeny Ibragimov ◽  
Sergei Cherkasov

The article presents data on the calculated values of improving the efficiency of fuel use at the thermal power plant as a result of the introduction of a technical solution for cooling the flue gases of boilers to the lowest possible temperature under the conditions of safe operation of reinforced concrete and brick chimneys with a constant value of the flue gas temperature, when changing the operating mode of the boiler.


2019 ◽  
Vol 9 (13) ◽  
pp. 2708 ◽  
Author(s):  
Yixin Zhang ◽  
Shansuo Zheng ◽  
Xianliang Rong ◽  
Liguo Dong ◽  
Hao Zheng

Previous research shows that freeze–thaw cycles represent one of the most dangerous threats to reinforced concrete (RC) structures. However, there is almost no experimental data on the effects of freeze–thaw cycles on the seismic behavior of RC columns showing flexure-shear failure. In this study, three columns with the shear span-to-depth ratio of 2.5 were subjected to different numbers of freeze–thaw cycles (FTCs) and pseudo-static testing. The seismic performance indexes of the specimens were analyzed in terms of hysteretic behavior, skeleton curves, shear deformation, and energy dissipation. The test observations show that the failure patterns of the test columns altered from the flexure dominated to shear dominated, owing to the more severe deterioration in shear capacity induced by freeze–thaw attack than in flexure capacity. The test results also indicate that freeze–thaw cycles significantly decrease the ductility and energy dissipation of test columns, and they increase the contributions of shear deformation to the total deformation.


2016 ◽  
Author(s):  
Shih-Ho Chao ◽  
Venkatesh Kaka ◽  
Guillermo Palacios ◽  
Jinsup Kim ◽  
Young-Jae Choi ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 13-15
Author(s):  
Tran Tuan Nam

Beam-to-column panel zone behavior in a steel moment-frame is characterized by the surrounding acting forces and its rotating deformation. When subjected to lateral forces, panel zones are deformed in a parallelogram pattern that one side of its diagonal direction is in tension whereas the other side is in compression. Moreover, right angles at the joints between the beam, column ends and the panel remains right angles. Shear strain causes the panel to rotate at a finite angle characterizing its rotating deformation. Based on experimental results from a full scale steel building collapse test, this paper discusses the elastic and elasto-plastic behavior of some typical panel zones.


2018 ◽  
Vol 763 ◽  
pp. 779-786 ◽  
Author(s):  
Dan Gan ◽  
Zheng Zhou ◽  
Xu Hong Zhou

This paper describes experimental investigation on three square tubed-reinforced-concrete (TRC) column to reinforced concrete (RC) beam joints with internal diaphragms subjected to cyclic loading, where width-to-thickness ratios of the steel tube in the panel zone and levels of axial load were selected as test parameters. Two failure modes, namely, joint shear failure and beam failure + bond failure were observed in the current test. Test results showed that the proposed composite joints exhibited favorable seismic performance.


Sign in / Sign up

Export Citation Format

Share Document