scholarly journals Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions

2018 ◽  
Vol 1 (4) ◽  
pp. e201700009 ◽  
Author(s):  
Lizhe Zhuang ◽  
Kynan T Lawlor ◽  
Holger Schlueter ◽  
Zalitha Pieterse ◽  
Yu Yu ◽  
...  

The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell–like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Mutagenesis ◽  
2010 ◽  
Vol 26 (2) ◽  
pp. 261-268 ◽  
Author(s):  
A. A. Reus ◽  
R. N. C. van Meeuwen ◽  
N. de Vogel ◽  
W. J. M. Maas ◽  
C. A. M. Krul

2021 ◽  
Author(s):  
DeAnna Baker Frost ◽  
Alisa Savchenko ◽  
Adeyemi Ogunleye ◽  
Milton Armstrong ◽  
Carol Feghali-Bostwick

Abstract Background: Both TGFb and estradiol (E2), a form of estrogen, are pro-fibrotic in the skin. In the connective tissue disease, systemic sclerosis (SSc), both TGFb and E2 are likely pathogenic. Yet, the regulation of TGFb in E2-induced dermal fibrosis remains ill-defined. Elucidating those regulatory mechanisms will improve the understanding of fibrotic disease pathogenesis and set the stage for developing potential therapeutics. Using E2-stimulated primary human dermal fibroblasts in vitro and human skin tissue ex vivo, we identified the important regulatory proteins for TGFb and investigated the extracellular matrix (ECM) components that are directly stimulated by E2-induced TGFb signaling.Methods: We used primary human dermal fibroblasts in vitro and human skin tissue ex vivo stimulated with E2 or vehicle (ethanol) to measure TGFb1, TGFb2 levels using quantitative PCR (qPCR). To identify the necessary cell signaling proteins in E2-induced TGFb1 and TGFb2 transcription, human dermal fibroblasts were pre-treated with an inhibitor of the extracellular signal-regulated kinase/ mitogen-activated protein kinase (ERK/MAPK) pathway, U0126. Finally, human skin tissue ex vivo was pre-treated with SB-431542, a TGFb receptor inhibitor, and ICI 182,780, an estrogen receptor α (ER α) inhibitor, to establish the effects of TGFb and ER α signaling on E2-induced collagen 22A1 (Col22A1) transcription. Results: We found that expression of TGFb1, TGFb2, and Col22A1, a TGFb-responsive gene, are induced in response to E2 stimulation. Mechanistically, Col22A1 induction was blocked by SB-431542 and ICI 182,780 despite E2 stimulation. Additionally, inhibiting E2-induced ERK/MAPK activation and early growth response 1 (EGR1) transcription prevents the E2-induced increase in TGFb1 and TGFb2 transcription and translation. Conclusions: We conclude that E2-induced dermal fibrosis occurs in part through induction of TGFb1, 2 and Col22A1, which is regulated through EGR1 and the MAPK pathway. Thus, blocking estrogen signaling and/or production may be a novel therapeutic option in pro-fibrotic diseases.


2004 ◽  
Vol 97 (6) ◽  
pp. 1149-1160 ◽  
Author(s):  
S. Messager ◽  
A.C. Hann ◽  
P.A. Goddard ◽  
P.W. Dettmar ◽  
J.-Y. Maillard

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 586 ◽  
Author(s):  
Dominika Krenczkowska ◽  
Krystyna Mojsiewicz-Pieńkowska ◽  
Bartosz Wielgomas ◽  
Dagmara Bazar ◽  
Zbigniew Jankowski

Cyclic methylsiloxanes D4, D5, D6 (also called cyclic silicones) are widely used in various dermatological products and cosmetics, both for children and adults. As a result of their unique physicochemical properties, the production of cyclic methylsiloxanes has greatly increased over the last few years, which has resulted in increased exposure to mankind. The validated quantitative for gas chromatography-flame ionization detector (GC-FID) analysis with using the transdermal diffusion system with vertical Franz cells demonstrated that ex vivo human skin is not a barrier to cyclic siloxanes. D4, D5, and D6 have a specific affinity to stratum corneum (SC) (especially D6), and can even diffuse into the deeper layers of the skin (epidermis (E) and dermis (D)), or into the receptor fluid as well. An important achievement of this work was the observation of the characteristic ratio partitioning D4, D5, and D6 in skin layers and receptor fluid (RF). The studies have shown that, in order to thoroughly understand the mechanism, it is important to determine not only the differences in the amounts of cumulated doses in total in all skin layers and receptor fluid, but also the mutual ratios of analyte concentrations existing between matrices. For example, in the case of the stratum corneum, the cumulative doses of D4, D5, and D6 were 27.5, 63.9, and 67.2 µg/cm2/24 h, respectively, and in the epidermis, they were 6.9, 29.9, and 10.7 µg/cm2/24 h, respectively, which confirmed the highest affinity of D6 to stratum corneum as the amount diffused into the epidermis was 2.8 times smaller compared to D5. The calculated epidermis-to-stratum corneum ratios of analyte concentrations also confirm this. The largest ratio was identified for D5 (E/SC = 47), followed by D4 (E/SC = 25), and finally by D6 (E/SC = 16). The analysis of the next stage of diffusion from epidermis to dermis revealed that in dermis the highest cumulative dose was observed for D5 (13.9 µg/cm2/24 h), while the doses of D4 and D6 were similar (5.1 and 5.3 µg/cm2/24 h). Considering the concentration gradient, it can be concluded that the diffusion of D5 and D6 occurs at a similar level, while D4 diffuses at a much higher level. These observations were also confirmed by the dermis-to-epidermis concentration ratios. The final stage of diffusion from dermis to the receptor fluid indicated that D4 was able to permeate easily, while D5 exhibited a difficult diffusion and the diffusion of D6 was limited. The receptor fluid-to-dermis concentration ratios (RF/D) were calculated for D4, D5, and D6: 80, 53, and 17, respectively. Our results also revealed the increased risk of D4 and D5 absorption into the blood and lymphatic systems, whereas D6 demonstrated the lowest risk. Therefore, we can argue that, among the three tested compounds, D6 is the safest one that can be used in dermatological, cosmetic, and personal care products. This study demonstrates that the stratum corneum, epidermis, and dermis can be also considered reservoirs of cyclic methylsiloxanes. Therefore, these compounds can demonstrate potential long-term bioaccumulation, and can be absorbed to the bloodstream in a long-term and uncontrolled process.


Sign in / Sign up

Export Citation Format

Share Document