scholarly journals Plk1 regulates spindle orientation by phosphorylating NuMA in human cells

2018 ◽  
Vol 1 (6) ◽  
pp. e201800223 ◽  
Author(s):  
Shrividya Sana ◽  
Riya Keshri ◽  
Ashwathi Rajeevan ◽  
Sukriti Kapoor ◽  
Sachin Kotak

Proper orientation of the mitotic spindle defines the correct division plane and is essential for accurate cell division and development. In metazoans, an evolutionarily conserved complex comprising of NuMA/LGN/Gαi regulates proper orientation of the mitotic spindle by orchestrating cortical dynein levels during metaphase. However, the molecular mechanisms that modulate the spatiotemporal dynamics of this complex during mitosis remain elusive. Here, we report that acute inactivation of Polo-like kinase 1 (Plk1) during metaphase enriches cortical levels of dynein/NuMA/LGN and thus influences spindle orientation. We establish that this impact of Plk1 on cortical levels of dynein/NuMA/LGN is through NuMA, but not via dynein/LGN. Moreover, we reveal that Plk1 inhibition alters the dynamic behavior of NuMA at the cell cortex. We further show that Plk1 directly interacts and phosphorylates NuMA. Notably, NuMA-phosphorylation by Plk1 impacts its cortical localization, and this is needed for precise spindle orientation during metaphase. Overall, our finding connects spindle-pole pool of Plk1 with cortical NuMA and answers a long-standing puzzle about how spindle-pole Plk1 gradient dictates proper spindle orientation for error-free mitosis.

2020 ◽  
Vol 133 (14) ◽  
pp. jcs243857 ◽  
Author(s):  
Riya Keshri ◽  
Ashwathi Rajeevan ◽  
Sachin Kotak

ABSTRACTProper orientation of the mitotic spindle is critical for accurate development and morphogenesis. In human cells, spindle orientation is regulated by the evolutionarily conserved protein NuMA, which interacts with dynein and enriches it at the cell cortex. Pulling forces generated by cortical dynein orient the mitotic spindle. Cdk1-mediated phosphorylation of NuMA at threonine 2055 (T2055) negatively regulates its cortical localization. Thus, only NuMA not phosphorylated at T2055 localizes at the cell cortex. However, the identity and the mechanism of action of the phosphatase complex involved in T2055 dephosphorylation remains elusive. Here, we characterized the PPP2CA-B55γ (PPP2R2C)–PPP2R1B complex that counteracts Cdk1 to orchestrate cortical NuMA for proper spindle orientation. In vitro reconstitution experiments revealed that this complex is sufficient for T2055 dephosphorylation. Importantly, we identified polybasic residues in NuMA that are critical for T2055 dephosphorylation, and for maintaining appropriate cortical NuMA levels for accurate spindle elongation. Furthermore, we found that Cdk1-mediated phosphorylation and PP2A-B55γ-mediated dephosphorylation at T2055 are reversible events. Altogether, this study uncovers a novel mechanism by which Cdk1 and its counteracting PP2A-B55γ complex orchestrate spatiotemporal levels of cortical force generators for flawless mitosis.


2014 ◽  
Vol 206 (6) ◽  
pp. 707-717 ◽  
Author(s):  
Mehdi Saadaoui ◽  
Mickaël Machicoane ◽  
Florencia di Pietro ◽  
Fred Etoc ◽  
Arnaud Echard ◽  
...  

Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.


2010 ◽  
Vol 189 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Zhen Zheng ◽  
Huabin Zhu ◽  
Qingwen Wan ◽  
Jing Liu ◽  
Zhuoni Xiao ◽  
...  

Coordinated cell polarization and mitotic spindle orientation are thought to be important for epithelial morphogenesis. Whether spindle orientation is indeed linked to epithelial morphogenesis and how it is controlled at the molecular level is still unknown. Here, we show that the NuMA- and Gα-binding protein LGN is required for directing spindle orientation during cystogenesis of MDCK cells. LGN localizes to the lateral cell cortex, and is excluded from the apical cell cortex of dividing cells. Depleting LGN, preventing its cortical localization, or disrupting its interaction with endogenous NuMA or Gα proteins all lead to spindle misorientation and abnormal cystogenesis. Moreover, artificial mistargeting of endogenous LGN to the apical membrane results in a near 90° rotation of the spindle axis and profound cystogenesis defects that are dependent on cell division. The normal apical exclusion of LGN during mitosis appears to be mediated by atypical PKC. Thus, cell polarization–mediated spatial restriction of spindle orientation determinants is critical for epithelial morphogenesis.


2015 ◽  
Vol 26 (7) ◽  
pp. 1286-1295 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
Iaroslav Ispolatov ◽  
Anne Müsch

All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.


1999 ◽  
Vol 144 (5) ◽  
pp. 947-961 ◽  
Author(s):  
Laifong Lee ◽  
Saskia K. Klee ◽  
Marie Evangelista ◽  
Charles Boone ◽  
David Pellman

Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Δ cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Δ cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.


2005 ◽  
Vol 170 (4) ◽  
pp. 571-582 ◽  
Author(s):  
Özlem Yüce ◽  
Alisa Piekny ◽  
Michael Glotzer

In anaphase, the spindle dictates the site of contractile ring assembly. Assembly and ingression of the contractile ring involves activation of myosin-II and actin polymerization, which are triggered by the GTPase RhoA. In many cells, the central spindle affects division plane positioning via unknown molecular mechanisms. Here, we dissect furrow formation in human cells and show that the RhoGEF ECT2 is required for cortical localization of RhoA and contractile ring assembly. ECT2 concentrates on the central spindle by binding to centralspindlin. Depletion of the centralspindlin component MKLP1 prevents central spindle localization of ECT2; however, RhoA, F-actin, and myosin still accumulate on the equatorial cell cortex. Depletion of the other centralspindlin component, CYK-4/MgcRacGAP, prevents cortical accumulation of RhoA, F-actin, and myosin. CYK-4 and ECT2 interact, and this interaction is cell cycle regulated via ECT2 phosphorylation. Thus, central spindle localization of ECT2 assists division plane positioning and the CYK-4 subunit of centralspindlin acts upstream of RhoA to promote furrow assembly.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Felipe Mora-Bermúdez ◽  
Fumio Matsuzaki ◽  
Wieland B Huttner

Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.


2001 ◽  
Vol 114 (23) ◽  
pp. 4319-4328
Author(s):  
Sherryl R. Bisgrove ◽  
Darryl L. Kropf

The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases – a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Arman Javadi ◽  
Ravi K Deevi ◽  
Emma Evergren ◽  
Elodie Blondel-Tepaz ◽  
George S Baillie ◽  
...  

PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.


2010 ◽  
Vol 30 (14) ◽  
pp. 3519-3530 ◽  
Author(s):  
Geoffrey E. Woodard ◽  
Ning-Na Huang ◽  
Hyeseon Cho ◽  
Toru Miki ◽  
Gregory G. Tall ◽  
...  

ABSTRACT In model organisms, resistance to inhibitors of cholinesterase 8 (Ric-8), a G protein α (Gα) subunit guanine nucleotide exchange factor (GEF), functions to orient mitotic spindles during asymmetric cell divisions; however, whether Ric-8A has any role in mammalian cell division is unknown. We show here that Ric-8A and Gαi function to orient the metaphase mitotic spindle of mammalian adherent cells. During mitosis, Ric-8A localized at the cell cortex, spindle poles, centromeres, central spindle, and midbody. Pertussis toxin proved to be a useful tool in these studies since it blocked the binding of Ric-8A to Gαi, thus preventing its GEF activity for Gαi. Linking Ric-8A signaling to mammalian cell division, treatment of cells with pertussis toxin, reduction of Ric-8A expression, or decreased Gαi expression similarly affected metaphase cells. Each treatment impaired the localization of LGN (GSPM2), NuMA (microtubule binding nuclear mitotic apparatus protein), and dynein at the metaphase cell cortex and disturbed integrin-dependent mitotic spindle orientation. Live cell imaging of HeLa cells expressing green fluorescent protein-tubulin also revealed that reduced Ric-8A expression prolonged mitosis, caused occasional mitotic arrest, and decreased mitotic spindle movements. These data indicate that Ric-8A signaling leads to assembly of a cortical signaling complex that functions to orient the mitotic spindle.


Sign in / Sign up

Export Citation Format

Share Document