scholarly journals Structural and functional characterization of the mitochondrial complex IV assembly factor Coa6

2019 ◽  
Vol 2 (5) ◽  
pp. e201900458 ◽  
Author(s):  
Shadi Maghool ◽  
N Dinesha G Cooray ◽  
David A Stroud ◽  
David Aragão ◽  
Michael T Ryan ◽  
...  

Assembly factors play key roles in the biogenesis of many multi-subunit protein complexes regulating their stability, activity, and the incorporation of essential cofactors. The human assembly factor Coa6 participates in the biogenesis of the CuA site in complex IV (cytochrome c oxidase, COX). Patients with mutations in Coa6 suffer from mitochondrial disease due to complex IV deficiency. Here, we present the crystal structures of human Coa6 and the pathogenic W59CCoa6-mutant protein. These structures show that Coa6 has a 3-helical bundle structure, with the first 2 helices tethered by disulfide bonds, one of which likely provides the copper-binding site. Disulfide-mediated oligomerization of the W59CCoa6 protein provides a structural explanation for the loss-of-function mutation.

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Celine Moorman ◽  
Ronald H A Plasterk

AbstractThe sgs-1 (suppressor of activated Gαs) gene encodes one of the four adenylyl cyclases in the nematode C. elegans and is most similar to mammalian adenylyl cyclase type IX. We isolated a complete loss-of-function mutation in sgs-1 and found it to result in animals with retarded development that arrest in variable larval stages. sgs-1 mutant animals exhibit lethargic movement and pharyngeal pumping and (while not reaching adulthood) have a mean life span that is >50% extended compared to wild type. An extensive set of reduction-of-function mutations in sgs-1 was isolated in a screen for suppressors of a neuronal degeneration phenotype induced by the expression of a constitutively active version of the heterotrimeric Gαs subunit of C. elegans. Although most of these mutations change conserved residues within the catalytic domains of sgs-1, mutations in the less-conserved transmembrane domains are also found. The sgs-1 reduction-of-function mutants are viable and have reduced locomotion rates, but do not show defects in pharyngeal pumping or life span.


2006 ◽  
Vol 394 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Sandra Müller ◽  
Jennifer Disse ◽  
Manuela Schöttler ◽  
Sylvia Schön ◽  
Christian Prante ◽  
...  

Human XT-I (xylosyltransferase I; EC 2.4.2.26) initiates the biosynthesis of the glycosaminoglycan linkage region and is a diagnostic marker of an enhanced proteoglycan biosynthesis. In the present study, we have investigated mutant enzymes of human XT-I and assessed the impact of the N-terminal region on the enzymatic activity. Soluble mutant enzymes of human XT-I with deletions at the N-terminal domain were expressed in insect cells and analysed for catalytic activity. As many as 260 amino acids could be truncated at the N-terminal region of the enzyme without affecting its catalytic activity. However, truncation of 266, 272 and 273 amino acids resulted in a 70, 90 and >98% loss in catalytic activity. Interestingly, deletion of the single 12 amino acid motif G261KEAISALSRAK272 leads to a loss-of-function XT-I mutant. This is in agreement with our findings analysing the importance of the Cys residues where we have shown that C276A mutation resulted in a nearly inactive XT-I enzyme. Moreover, we investigated the location of the heparin-binding site of human XT-I using the truncated mutants. Heparin binding was observed to be slightly altered in mutants lacking 289 or 568 amino acids, but deletion of the potential heparin-binding motif P721KKVFKI727 did not lead to a loss of heparin binding capacity. The effect of heparin or UDP on the XT-I activity of all mutants was not significantly different from that of the wild-type. Our study demonstrates that over 80% of the nucleotide sequence of the XT-I-cDNA is necessary for expressing a recombinant enzyme with full catalytic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ken Lee ◽  
Sang O Park ◽  
Pil-Cho Choi ◽  
Seung-Bum Ryoo ◽  
Haeyeong Lee ◽  
...  

AbstractVolume accommodation occurs via a novel mechanism involving interstitial cells in detrusor muscles. The interstitial cells in the bladder are PDGFRα+, and they restrain the excitability of smooth muscle at low levels and prevents the development of transient contractions (TCs). A common clinical manifestation of spinal cord injury (SCI)-induced bladder dysfunction is detrusor overactivity (DO). Although a myogenic origin of DO after SCI has been suggested, a mechanism for development of SCI-induced DO has not been determined. In this study we hypothesized that SCI-induced DO is related to loss of function in the regulatory mechanism provided by PDGFRα+ cells. Our results showed that transcriptional expression of Pdgfra and Kcnn3 was decreased after SCI. Proteins encoded by these genes also decreased after SCI, and a reduction in PDGFRα+ cell density was also documented. Loss of PDGFRα+ cells was due to apoptosis. TCs in ex vivo bladders during filling increased dramatically after SCI, and this was related to the loss of regulation provided by SK channels, as we observed decreased sensitivity to apamin. These findings show that damage to the mechanism restraining muscle contraction during bladder filling that is provided by PDGFRα+ cells is causative in the development of DO after SCI.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250318
Author(s):  
Natalia Sevillano ◽  
Evan M. Green ◽  
Jörg Votteler ◽  
Dong Young Kim ◽  
Xuefeng Ren ◽  
...  

Viral infection and pathogenesis is mediated by host protein—viral protein complexes that are important targets for therapeutic intervention as they are potentially less prone to development of drug resistance. We have identified human, recombinant antibodies (Fabs) from a phage display library that bind to three HIV-host complexes. We used these Fabs to 1) stabilize the complexes for structural studies; and 2) facilitate characterization of the function of these complexes. Specifically, we generated recombinant Fabs to Vif-CBF-β-ELOB-ELOC (VCBC); ESCRT-I complex and AP2-complex. For each complex we measured binding affinities with KD values of Fabs ranging from 12–419 nM and performed negative stain electron microscopy (nsEM) to obtain low-resolution structures of the HIV-Fab complexes. Select Fabs were converted to scFvs to allow them to fold intracellularly and perturb HIV-host protein complex assembly without affecting other pathways. To identify these recombinant Fabs, we developed a rapid screening pipeline that uses quantitative ELISAs and nsEM to establish whether the Fabs have overlapping or independent epitopes. This pipeline approach is generally applicable to other particularly challenging antigens that are refractory to immunization strategies for antibody generation including multi-protein complexes providing specific, reproducible, and renewable antibody reagents for research and clinical applications. The curated antibodies described here are available to the scientific community for further structural and functional studies on these critical HIV host-factor proteins.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Federica Prosperi ◽  
Yoko Suzumoto ◽  
Pierluigi Marzuillo ◽  
Vincenzo Costanzo ◽  
Sabina Jelen ◽  
...  

Abstract Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.


2010 ◽  
Vol 299 (4) ◽  
pp. F767-F775 ◽  
Author(s):  
James E. Shima ◽  
Takafumi Komori ◽  
Travis R. Taylor ◽  
Doug Stryke ◽  
Michiko Kawamoto ◽  
...  

Apical reabsorption from the urine has been shown to be important for such processes as the maintenance of critical metabolites in the blood and the excretion of nephrotoxic compounds. The solute carrier (SLC) transporter OAT4 ( SLC22A11) is expressed on the apical membrane of renal proximal tubule cells and is known to mediate the transport of a variety of xenobiotic and endogenous organic anions. Functional characterization of genetic variants of apical transporters thought to mediate reabsorption, such as OAT4, may provide insight into the genetic factors influencing the complex pathways involved in drug elimination and metabolite reclamation occurring in the kidney. Naturally occurring genetic variants of OAT4 were identified in public databases and by resequencing DNA samples from 272 individuals comprising 4 distinct ethnic groups. Nine total nonsynonymous variants were identified and functionally assessed using uptake of three radiolabeled substrates. A nonsense variant, R48Stop, and three other variants (R121C, V155G, and V155M) were found at frequencies of at least 2% in an ethnic group specific fashion. The L29P, R48Stop, and H469R variants displayed a complete loss of function, and kinetic analysis identified a reduced Vmax in the common nonsynonymous variants. Plasma membrane levels of OAT4 protein were absent or reduced in the nonfunctional variants, providing a mechanistic reason for the observed loss of function. Characterization of the genetic variants of reabsorptive transporters such as OAT4 is an important step in understanding variability in tubular reabsorption with important implications in innate homeostatic processes and drug disposition.


Sign in / Sign up

Export Citation Format

Share Document