scholarly journals GALILEO GALILEI´S THESIS EXPANDED

Author(s):  
Walter GOMIDE ◽  

In this short article, I try to show alternative maths to real numbers in such a way that these maths (especially Transreal Numbers by James Anderson and Arithmetic of Infinity by Yaroslav Sergeyev) can also be considered as legitimate instruments for presenting the structure of reality. I call this thesis of expanding the possibilities of understanding Nature mathematically the "Galileo Galilei´s thesis extended". As an example of the application of the thesis that the mathematics that is at the base of Nature must be extended to a better assessment of the scope of physical laws, here we present the Heisenberg´s Uncertainty Principle, approached in an alternative way from a mathematical point of view.

2017 ◽  
Vol 992 (4) ◽  
pp. 32-38 ◽  
Author(s):  
E.G. Voronin

The article opens a cycle of three consecutive publications dedicated to the phenomenon of the displacement of the same points in overlapping scans obtained adjacent CCD matrices with opto-electronic imagery. This phenomenon was noticed by other authors, but the proposed explanation for the origin of displacements and the resulting estimates are insufficient, and developed their solutions seem controversial from the point of view of recovery of the measuring accuracy of opticalelectronic space images, determined by the physical laws of their formation. In the first article the mathematical modeling of the expected displacements based on the design features of a scanning opto-electronic imaging equipment. It is shown that actual bias cannot be forecast, because they include additional terms, which may be gross, systematic and random values. The proposed algorithm for computing the most probable values of the additional displacement and ways to address some of the systematic components of these displacements in a mathematical model of optical-electronic remote sensing.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Maurice A. de Gosson

AbstractWe define and study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta. Extending previous work of ours, we show that the orthogonal projections of the covariance ellipsoid of a quantum state on the configuration and momentum spaces form what we call a dual quantum pair. We thereafter show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions. The notion of quantum polarity exhibits a strong interplay between the uncertainty principle and symplectic and convex geometry and our approach could therefore pave the way for a geometric and topological version of quantum indeterminacy. We relate our results to the Blaschke–Santaló inequality and to the Mahler conjecture. We also discuss the Hardy uncertainty principle and the less-known Donoho–Stark principle from the point of view of quantum polarity.


Author(s):  
Mario Spagnuolo ◽  
Antonio M. Cazzani

AbstractIn this work, an extension of the strain energy for fibrous metamaterials composed of two families of parallel fibers lying on parallel planes and joined by connective elements is proposed. The suggested extension concerns the possibility that the constituent fibers come into contact and eventually scroll one with respect to the other with consequent dissipation due to friction. The fibers interact with each other in at least three different ways: indirectly, through microstructural connections that could allow a relative sliding between the two families of fibers; directly, as the fibers of a family can touch each other and can scroll introducing dissipation. From a mathematical point of view, these effects are modeled first by introducing two placement fields for the two fiber families and adding a coupling term to the strain energy and secondly by adding two other terms that take into account the interdistance between the parallel fibers and the Rayleigh dissipation potential (to account for friction).


Filomat ◽  
2013 ◽  
Vol 27 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Miodrag Mateljevic ◽  
Marek Svetlik ◽  
Miloljub Albijanic ◽  
Nebojsa Savic

In this paper we give a generalization of the Lagrange mean value theorem via lower and upper derivative, as well as appropriate criteria of monotonicity and convexity for arbitrary function f : (a, b) ( R. Some applications to the neoclassical economic growth model are given (from mathematical point of view).


1986 ◽  
Vol 8 (1) ◽  
Author(s):  
Frederick Stoutland

AbstractThe reasons-causes debate concerns whether explanations of human behavior in terms of an agent's reasons presuppose causal laws. This paper considers three approaches to this debate: the covering law model which holds that there are causal laws covering both reasons and behavior, the intentionalist approach which denies any role to causal laws, and Donald Davidson’s point of view which denies that causal laws connect reasons and behavior, but holds that reasons and behavior must be covered by physical laws if reasons explanations are to be valid. I defend the intentionalist approach against the two causalist approaches and conclude with reflections on the significance of the debate for the social sciences.


2020 ◽  
pp. 622-675
Author(s):  
Giuseppe Mussardo

Chapter 17 discusses the S-matrix theory of two-dimensional integrable models. From a mathematical point of view, the two-dimensional nature of the systems and their integrability are the crucial features that lead to important simplifications of the formalism and its successful application. This chapter deals with the analytic theory of the S-matrix of the integrable models. A particular emphasis is put on the dynamical principle of bootstrap, which gives rise to a recursive structure of the amplitudes. It also covers several dynamical quantities, such as mass ratios or three-coupling constants, which have an elegant mathematic formulation that is also of easy geometrical interpretation.


Molecular dynamics deals with the motion of and the reaction between atoms and molecules. The fundamental theory for the description of essentially all aspects of the area has been known and defined through the non-relativistic Schrdinger equation since 1926. The “only” problem, therefore, is the solution of this fundamental equation. Unfortunately, this solution is not straightforward and, as early as 1929, prompted the following remark by Dirac (1929). . . The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the application of these laws leads to equations much too complicated to be soluble. . . . Dirac could, for that matter, have added the area of molecular biochemistry. But here the systems become even bigger and therefore the above statement is even more correct. What neither Dirac nor anybody else at that time could foresee was the invention of the computer. With that, a whole new area, namely that of computational chemistry, was created. The recent five-volume work Encyclopedia of Computational Chemistry (1998[1]), with several hundred entries, bears witness to the tremendous evolution in this particular area over the last fifty years or so. The success of computational chemistry has to do not only with computers and the increase in computational speed but also with the development of new methods. Here again it should be emphasized that the availability of computers makes the construction of approximate methods a very rich and diverse field with many possibilities. Thus, this combination of computer power and the invention of theoretical and computational methods has changed the pessimistic point of view into an optimistic one. To quote Clementi (1972), “We can calculate everything.” Although this statement, at least in 1972, was somewhat optimistic, development since then has shown that the attitude should be quite optimistic. The purpose of approximate methods should be, and always is, to try to circumvent the bad scaling relations of quantum mechanics.


1933 ◽  
Vol 17 (226) ◽  
pp. 296-297
Author(s):  
S.T Shovelton

The game of Banker’s Clock provides an interesting question in mathematical probability In this game the banker turns up in sequence the first twelve cards of a well-shuffled ordinary pack of 52 cards. He backs himself to turn up at least one card of which the face value corresponds to its position in the sequence, an Ace ranking as one, a Jack as eleven and a Queen as twelve. The interest in the question from the mathematical point of view is in finding the probability that the event will happen.


Sign in / Sign up

Export Citation Format

Share Document