scholarly journals Genetic diversity of advanced generation breeding population of Eucalyptus urophylla in China

2018 ◽  
Vol 30 (3) ◽  
pp. 320-329
Author(s):  
Lu WH ◽  
Qi J ◽  
Lan J ◽  
Luo JZ
2021 ◽  
Author(s):  
◽  
Gemma Bowker-Wright

<p>Pateke/brown teal (Anas chlorotis) have experienced a severe population crash leaving only two remnant wild populations (at Great Barrier Island and Mimiwhangata, Northland). Recovery attempts over the last 35 years have focused on an intensive captive breeding programme which breeds pateke, sourced almost exclusively from Great Barrier Island, for release to establish re-introduced populations in areas occupied in the past. While this important conservation measure may have increased pateke numbers, it was unclear how much of their genetic diversity was being retained. The goal of this study was to determine current levels of genetic variation in the remnant, captive and re-introduced pateke populations using two types of molecular marker, mitochondrial DNA (mtDNA) and microsatellite DNA. Feathers were collected from pateke at Great Barrier Island, Mimiwhangata, the captive breeding population and four re-introduced populations (at Moehau, Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island). DNA was extracted from the base of the feathers, the mitochondrial DNA control region was sequenced, and DNA microsatellite markers were used to genotype individuals. The Great Barrier Island population was found to have only two haplotypes, one in very high abundance which may indicate that historically this population was very small. The captive breeding population and all four re-introduced populations were found to contain only the abundant Great Barrier Island haplotype as the vast majority of captive founders were sourced from this location. In contrast, the Mimiwhangata population contained genetic diversity and 11 haplotypes were found, including the Great Barrier Island haplotype which may have been introduced by captive-bred releases which occurred until the early 1990s. From the microsatellite results, a loss of genetic diversity (measured as average alleles per locus, heterozygosity and allelic richness) was found from Great Barrier Island to captivity and from captivity to re-introduction. Overall genetic diversity within the re-introduced populations (particularly the smaller re-introduced populations at Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island) was much reduced compared with the remnant populations, most probably as a result of small release numbers and small population size. Such loss of genetic diversity could render the re-introduced populations more susceptible to inbreeding depression in the future. Suggested future genetic management options are included which aim for a broader representation of genetic diversity in the pateke captive breeding and release programme.</p>


2021 ◽  
Author(s):  
◽  
Gemma Bowker-Wright

<p>Pateke/brown teal (Anas chlorotis) have experienced a severe population crash leaving only two remnant wild populations (at Great Barrier Island and Mimiwhangata, Northland). Recovery attempts over the last 35 years have focused on an intensive captive breeding programme which breeds pateke, sourced almost exclusively from Great Barrier Island, for release to establish re-introduced populations in areas occupied in the past. While this important conservation measure may have increased pateke numbers, it was unclear how much of their genetic diversity was being retained. The goal of this study was to determine current levels of genetic variation in the remnant, captive and re-introduced pateke populations using two types of molecular marker, mitochondrial DNA (mtDNA) and microsatellite DNA. Feathers were collected from pateke at Great Barrier Island, Mimiwhangata, the captive breeding population and four re-introduced populations (at Moehau, Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island). DNA was extracted from the base of the feathers, the mitochondrial DNA control region was sequenced, and DNA microsatellite markers were used to genotype individuals. The Great Barrier Island population was found to have only two haplotypes, one in very high abundance which may indicate that historically this population was very small. The captive breeding population and all four re-introduced populations were found to contain only the abundant Great Barrier Island haplotype as the vast majority of captive founders were sourced from this location. In contrast, the Mimiwhangata population contained genetic diversity and 11 haplotypes were found, including the Great Barrier Island haplotype which may have been introduced by captive-bred releases which occurred until the early 1990s. From the microsatellite results, a loss of genetic diversity (measured as average alleles per locus, heterozygosity and allelic richness) was found from Great Barrier Island to captivity and from captivity to re-introduction. Overall genetic diversity within the re-introduced populations (particularly the smaller re-introduced populations at Karori Wildlife Sanctuary, Tiritiri Matangi Island and Mana Island) was much reduced compared with the remnant populations, most probably as a result of small release numbers and small population size. Such loss of genetic diversity could render the re-introduced populations more susceptible to inbreeding depression in the future. Suggested future genetic management options are included which aim for a broader representation of genetic diversity in the pateke captive breeding and release programme.</p>


2011 ◽  
Vol 18 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Fatemeh Mohammadzadeh ◽  
Hassan Monirifar ◽  
Jalal Saba ◽  
Mostafa Valizadeh ◽  
Ahmad Razban Haghighi ◽  
...  

Genetic diversity among and within 10 populations of Iranian alfalfa, from different areas of Azarbaijan, Iran was analyzed by screening DNA from seeds of individual plants and bulk samples. In individual study, 10 randomly amplified polymorphic DNA (RAPD) primers produced 156 polymorphic bands and a high level of genetic diversity was observed within populations. The averages of total and within population genetic diversity were 0.2349 and 0.1892, respectively. Results of analysis of molecular variance (AMOVA) showed the great genetic variation existed within populations (81.37%). These Results were in agreement with allogamous and polyploid nature of alfalfa. Cluster analysis was performed based on Nei’s genetic distances resulting in grouping into 3 clusters which could separate breeding population from other populations. Results of cluster analysis were in consistent with morphological and geographical patterns of populations. The results of bulk method were different from individual analysis. Our results showed that RAPD analysis is a suitable method to study genetic diversity and relationships among alfalfa populations.Keywords: Alfalfa; RAPD; Genetic diversity; Analysis of Molecular Variance; Cluster analysis.DOI: http://dx.doi.org/10.3329/bjpt.v18i2.9296Bangladesh J. Plant Taxon. 18: (2): 93-104, 2011 (December)


2015 ◽  
Vol 64 (1-6) ◽  
pp. 170-181 ◽  
Author(s):  
Paulo H. M. Da Silva ◽  
M. Shepherd ◽  
D. Grattapaglia ◽  
A. M. Sebbenn

Abstract Tree improvement generally proceeds by incremental gains obtained from recurrent selection in large diverse populations but is slow due to long generation times and delay till trees reach assessment age. This places a premium upon extracting data from historic introductions used to found landraces when reinstating modern breeding programs. The value of such resources, however, may be degraded due to a lack of records on germplasm origins, pedigrees and early performance, but DNA technology may help recoup some of this value. Eucalyptus pilularis (subgenus Eucalyptus) is regarded as a premier hardwood plantation species for saw log and poles in Australia, but has not been used extensively despite early introductions and testing in many countries overseas. Here we use DNA fingerprinting to assess genetic diversity and inbreeding in historic introductions of E. pilularis to evaluate this resource in advance of a reinvigorated breeding effort for this species in Brazil. As expected, based on the available documentation for the introductions, genetic diversity relative to Australian reference populations does not appear to be compromised, and there was unlikely to be excessive inbreeding. Also, favorable, was the likelihood that further selections should not unduly increase the relationship in the next generation. Interestingly, we note the importance of testing widely adapted sources of germplasm when making introductions, as provenances which performed poorly in tests on productive sites in Australia, may have value when matched with lower fertility sites overseas.


Sign in / Sign up

Export Citation Format

Share Document