scholarly journals Atomic absorption and atomic emission with inductive connected plasma detection of Lead and Iron in strata water using new medias and standard composition samples

An influence of SAS (Тriton Х-100) concentration and ultrasound treatment time on the value of analytical signal at atomic absorption and atomic emission with inductive connected plasma detection of analytes in strata water was studied. Maximal analytical signal at of Lead and Iron was reached at using nonionogenic SAS which let us to decrease surface tension of the analyzed solution and to increase absorptivity at analytes detection. It was shown that using of the modern sample preparation increase sensibility of atomic absorption detection of Lead in 1,5 times and Iron in 1,8 times. By the methods of atomic absorption and atomic emission with inductive connected plasma spectroscopy and using acetylacetonates of Lead and Iron as standard composition samples, that let us to increase sensitivity of the detection of analytes, contain of Lead and Iron in strata water was determined. By variation of the sample volume and by "injected-found out" method we have proved that systematic error is not significant. The results, obtained by two independent methods were compared according to F- and t-criteria. It was proved that dispersions are homogenous and run of the means is not sufficient and proved by random scatter. By atomic absorption method we estimated the detection limit of the analytes according to the developed methodic and show that the obtained results are lower than the same data from literature. The developed methodic, according to its metrological characteristics, is competitive at international level.

2018 ◽  
Vol 62 (06) ◽  
pp. 11-15
Author(s):  
Oleg Ivanovych Yurchenko ◽  
◽  
Nadegda Petrovna Titova ◽  
Tetyana Vasylivna Chernozhuk ◽  
Oleksii Andriovych Kravchenko ◽  
...  

2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


1965 ◽  
Vol 48 (6) ◽  
pp. 1100-1103
Author(s):  
C H Mcbride

Abstract The atomic absorption method studied last year was re-examined and extended to include calcium and sodium. The procedures were submitted to 16 collaborators for determination of Ca, Cu, Fe, Mg, Mn, Na, and Zn. Results for Ca and Na were discouraging; further study is recommended.


1981 ◽  
Vol 35 (3) ◽  
pp. 317-324 ◽  
Author(s):  
N. W. Bower ◽  
J. D. Ingle

Theoretical equations and experimental evaluation procedures for the determination of the precision of flame atomic absorption, emission, and fluorescence measurements are presented. These procedures and noise power spectra are used to evaluate the precision and noise characteristics of atomic copper measurements with all three techniques under the same experimental conditions in an H2-air flame. At the detection limit, emission and fluorescence measurements are limited by background emission shot and flicker noise whereas absorption measurements are limited by flame transmission lamp flicker noise. Analyte flicker noise limits precision at higher analyte concentrations for all three techniques. Fluctutations in self-absorption and the inner filter effect are shown to contribute to the noise in atomic emission and fluorescence measurements.


Sign in / Sign up

Export Citation Format

Share Document