Video Compression Standards for High Definition Video: A Comparative Study of High Efficiency Video Coding and H.264/MPEG-4 AVC

2013 ◽  
Vol 2 (4) ◽  
pp. 14-19
Author(s):  
Geethu Raj ◽  
M. Kannan
Author(s):  
Diego Jesus Serrano-Carrasco ◽  
Antonio Jesus Diaz-Honrubia ◽  
Pedro Cuenca

AbstractWith the advent of smartphones and tablets, video traffic on the Internet has increased enormously. With this in mind, in 2013 the High Efficiency Video Coding (HEVC) standard was released with the aim of reducing the bit rate (at the same quality) by 50% with respect to its predecessor. However, new contents with greater resolutions and requirements appear every day, making it necessary to further reduce the bit rate. Perceptual video coding has recently been recognized as a promising approach to achieving high-performance video compression and eye tracking data can be used to create and verify these models. In this paper, we present a new algorithm for the bit rate reduction of screen recorded sequences based on the visual perception of videos. An eye tracking system is used during the recording to locate the fixation point of the viewer. Then, the area around that point is encoded with the base quantization parameter (QP) value, which increases when moving away from it. The results show that up to 31.3% of the bit rate may be saved when compared with the original HEVC-encoded sequence, without a significant impact on the perceived quality.


Author(s):  
MyungJun Kim ◽  
Yung-Lyul Lee

High Efficiency Video Coding (HEVC) uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT), for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST)-based interpolation filters (IF) are proposed. The first proposed DST-based IFs (DST-IFs) use 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. The final proposed DST-IFs use 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. These DST-IF methods are proposed to improve the motion-compensated prediction in HEVC. The 8-point and 7-point DST-IF methods showed average BD-rate reductions of 0.7% and 0.3% in the random access (RA) and low delay B (LDB) configurations, respectively. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively.


2020 ◽  
Vol 34 (07) ◽  
pp. 11580-11587
Author(s):  
Haojie Liu ◽  
Han Shen ◽  
Lichao Huang ◽  
Ming Lu ◽  
Tong Chen ◽  
...  

Traditional video compression technologies have been developed over decades in pursuit of higher coding efficiency. Efficient temporal information representation plays a key role in video coding. Thus, in this paper, we propose to exploit the temporal correlation using both first-order optical flow and second-order flow prediction. We suggest an one-stage learning approach to encapsulate flow as quantized features from consecutive frames which is then entropy coded with adaptive contexts conditioned on joint spatial-temporal priors to exploit second-order correlations. Joint priors are embedded in autoregressive spatial neighbors, co-located hyper elements and temporal neighbors using ConvLSTM recurrently. We evaluate our approach for the low-delay scenario with High-Efficiency Video Coding (H.265/HEVC), H.264/AVC and another learned video compression method, following the common test settings. Our work offers the state-of-the-art performance, with consistent gains across all popular test sequences.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 165 ◽  
Author(s):  
Xiantao Jiang ◽  
Tian Song ◽  
Daqi Zhu ◽  
Takafumi Katayama ◽  
Lu Wang

Perceptual video coding (PVC) can provide a lower bitrate with the same visual quality compared with traditional H.265/high efficiency video coding (HEVC). In this work, a novel H.265/HEVC-compliant PVC framework is proposed based on the video saliency model. Firstly, both an effective and efficient spatiotemporal saliency model is used to generate a video saliency map. Secondly, a perceptual coding scheme is developed based on the saliency map. A saliency-based quantization control algorithm is proposed to reduce the bitrate. Finally, the simulation results demonstrate that the proposed perceptual coding scheme shows its superiority in objective and subjective tests, achieving up to a 9.46% bitrate reduction with negligible subjective and objective quality loss. The advantage of the proposed method is the high quality adapted for a high-definition video application.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1405 ◽  
Author(s):  
Riccardo Peloso ◽  
Maurizio Capra ◽  
Luigi Sole ◽  
Massimo Ruo Roch ◽  
Guido Masera ◽  
...  

In the last years, the need for new efficient video compression methods grown rapidly as frame resolution has increased dramatically. The Joint Collaborative Team on Video Coding (JCT-VC) effort produced in 2013 the H.265/High Efficiency Video Coding (HEVC) standard, which represents the state of the art in video coding standards. Nevertheless, in the last years, new algorithms and techniques to improve coding efficiency have been proposed. One promising approach relies on embedding direction capabilities into the transform stage. Recently, the Steerable Discrete Cosine Transform (SDCT) has been proposed to exploit directional DCT using a basis having different orientation angles. The SDCT leads to a sparser representation, which translates to improved coding efficiency. Preliminary results show that the SDCT can be embedded into the HEVC standard, providing better compression ratios. This paper presents a hardware architecture for the SDCT, which is able to work at a frequency of 188 M Hz , reaching a throughput of 3.00 GSample/s. In particular, this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz , which is one of the best resolutions supported by HEVC.


2020 ◽  
pp. 599-609
Author(s):  
Hajar Touzani ◽  
Ibtissem Wali ◽  
Fatima Errahimi ◽  
Anass Mansouri ◽  
Nouri Masmoudi ◽  
...  

New and stronger video compression standard was developed during the last years, called H.265/HEVC (High Efficiency Video Coding). This standard has undergone several improvements compared to H.264/AVC (Advanced Video Coding). In intra prediction block, 33 directional intra prediction modes were included in H.265 to have an efficient coding instead of 8 modes that were used in H.264 in addition to planar and DC modes, which has generated computational complexities in the new standard. Therefore one of the most issues for embedded implementation of HEVC is time reduction of the encoding process. In this paper, an embedded implementation of a fast intra prediction algorithm is performed on ARM processors under the embedded Linux Operating System. Experimental results included the comparison between the original HM16.7 and the proposed algorithm show that the encoding time was reduced by an average of 61.5% with an increase of 1.19 in the bit rate and a small degradation in the PSNR of 0.05%.


2013 ◽  
Vol 446-447 ◽  
pp. 961-965
Author(s):  
Gang Wang ◽  
He Xin Chen ◽  
Mian Shu Chen ◽  
Yuan Yuan Liu

The video coding standard of a new generation, high efficiency video coding ( HEVC ), is a video coding standard of JCT-VT under planning, mainly orienting toward high definition television (HDTV)and video coding system. From the start of the basic structure of HEVC, this paper not only introduces comprehensively the key HEVC technologies in intra-frame and inter-frame predictive estimation, orthogonal transformation, filter compensation and entropy coding but also points out the hot issues and the latest research direction.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 93
Author(s):  
Parmeshwar Kokare ◽  
Dr MasoodhuBanu. N.M

High efficiency video coding (HEVC) is the latest video compression standard. The coding efficiency of HEVC is 50% more than the preceding standard Advanced video coding (AVC). HEVC has gained this by introducing many advanced techniques such as adaptive block partitioning system known as quadtree, tiles for parallelization, improved entropy coding called Context-Adaptive Binary Arithmetic Coding (CABAC), 35 intra prediction modes (IPMs), etc. all these techniques have increased the complexity of encoding process due to which real time application of HEVC for video transfer is not yet convenient. The main objective of this paper is to provide a review of the recent developments in HEVC, particularly focusing on using region of interest (ROI) for reducing the encoding process time. Summaries of the different approaches to identify the ROI are discussed and a new method is explained. 


2020 ◽  
Vol 29 (11) ◽  
pp. 2050182
Author(s):  
Zhilei Chai ◽  
Shen Li ◽  
Qunfang He ◽  
Mingsong Chen ◽  
Wenjie Chen

The explosive growth of video applications has produced great challenges for data storage and transmission. In this paper, we propose a new ROI (region of interest) encoding solution to accelerate the processing and reduce the bitrate based on the latest video compression standard H.265/HEVC (High-Efficiency Video Coding). The traditional ROI extraction mapping algorithm uses pixel-based Gaussian background modeling (GBM), which requires a large number of complex floating-point calculations. Instead, we propose a block-based GBM to set up the background, which is in accord with the block division of HEVC. Then, we use the SAD (sum of absolute difference) rule to separate the foreground block from the background block, and these blocks are mapped into the coding tree unit (CTU) of HEVC. Moreover, the quantization parameter (QP) is adjusted according to the distortion rate automatically. The experimental results show that the processing speed on FPGA has reached a real-time level of 22 FPS (frames per second) for full high-definition videos ([Formula: see text]), and the bitrate is reduced by 10% on average with stable video quality.


Sign in / Sign up

Export Citation Format

Share Document