scholarly journals Effect of zinc-solubilizing bacteria and organic acids on zinc uptake and growth of rice applied with zinc sulfate

Food Research ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 153-163
Author(s):  
Nur Maizatul Idayu O. ◽  
Radziah O. ◽  
M.S. Halimi

An Investigation on the influence of Zinc-solubilizing bacteria (ZSB) inoculation, Zn fertilizer and organic acids on growth of rice was done at Microbiology lab, Universiti Putra Malaysia. Commercial oxalic acid (BDH), malic acid (SIGMA), citric acid (SIGMA), succinic acid (SIGMA) was used to solubilise Zn oxide, Zn carbonate and Zn sulfate at four different rates (0, 0.1, 1.0 and 10 mM). Selected organic acid and its rate was then combined with ZSB and Zn sulfate using sand culture experiment for rice plant treatment. Highest Zn sulfate solubilisation activity at 0.421 mg/L was found using citric acid as a solubilizer. Similar observation found for malic acid and oxalic acid in Zn sulfate at 0.331 mg/L and 0.249 mg/L respectively. Then, selected organic acids were malic acid and citric acid for plant treatment with Zn-solubilizing bacteria (ZSB) and Zn sulfate. Highest plant biomass was found in inoculated plants treated with 0.1 mM malic acid in the presence of Zn sulfate at 135.67 mg/3 plants. The same treatment was also observed for the highest plant height at 29.57 cm. With the addition of malic acid, the population of the rhizosphere, endosphere and non-rhizosphere varied, but higher than control treatment Application of ZSB inoculation, with Zn sulfate at 0.2 mg/L worked best with malic acid at 0.1 mM concentration due to high increase of rice plant growth parameters, Zn uptake and Zn concentration. Bacterial populations also varied due to different organic acids and their rate

2015 ◽  
Vol 12 (2) ◽  
pp. 340-349
Author(s):  
Baghdad Science Journal

A new reversed phase- high performance liquid chromatographic (RP-HPLC) method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of organic acids present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting organic acids. Limit of detection in µg/ml of Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid 126.8498×10-6, 113.6005×10-6, 97.0513×10-6, 49.7925×10-6, 84.0753×10-6, 92.6551×10-6, and 106.1633×10-6 ,respectively. The concentration of organic acids found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid are 114.896 µg/g, 64.722 µg/g, 342.508 µg/g, 126.902 µg/g, 449.91 µg/g, 268.52 µg/g, and 254.07 µg/g respectively.


2011 ◽  
Vol 33 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Annete de Jesus Boari Lima ◽  
Angelita Duarte Corrêa ◽  
Ana Maria Dantas-Barros ◽  
David Lee Nelson ◽  
Ana Carolina Lourenço Amorim

The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed) of the Paulista (Plinia cauliflora) and Sabará (Plinia jaboticaba) jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.


1994 ◽  
Vol 77 (4) ◽  
pp. 1056-1059 ◽  
Author(s):  
M L Vazquez Oderiz ◽  
M E Vazquez Blanco ◽  
J Lopez Hernandez ◽  
J Simal Lozano ◽  
M A Romero Rodriguez

Abstract A method is described for determining and quantitating organic acids (oxalic, malic, citric, and fumaric) and vitamin C by liquid chromatography with a UV–visible detector that allows simultaneous monitoring at 2 wavelengths. The method was applied to samples of green beans (Phaseolus vulgaris L.). Recoveries were 97.8% for oxalic acid, 98.9% for malic acid, 98.7% for citric acid, 99.2% for fumaric acid, and 98.5% for vitamin C. Method precisions (coefficients of variation) were 1.7% for oxalic acid, 0.8% for malic acid, 0.9% for citric acid, 1.5% for fumaric acid, and 1.2% for vitamin C. Measurement precisions (coefficients of variation) were 1.32% for oxalic acid, 0.33% for malic acid, 0.62% for citric acid, 1.01 % for fumaric acid, and 0.39% for vitamin C. Limits of detection were 0.025 mg/mL for oxalic acid, 0.022 mg/mL for malic acid, 0.024 mg/mL for citric acid, 1.0 × 10−4 mg/mL for fumaric acid, and 2.7 × 10−4 mg/mL for vitamin C.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xilan Tang ◽  
Jianxun Liu ◽  
Wei Dong ◽  
Peng Li ◽  
Lei Li ◽  
...  

Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components ofFructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. Inin vivorat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation.In vitroexperiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient ofFructus Choerospondiatisresponsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease.


2016 ◽  
Vol 79 (12) ◽  
pp. 2184-2189 ◽  
Author(s):  
MYEONGGEUN OH ◽  
JOONGJAE LEE ◽  
YOONHWA JEONG ◽  
MISOOK KIM

ABSTRACT We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes. The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes.


1982 ◽  
Vol 65 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Felix G R Reyes ◽  
Ronald E Wrolstad ◽  
Christopher J Cornwell

Abstract Free sugars and major nonvolatile organic acids present in strawberries at 3 degrees of ripeness were determined by 3 analytical methods: enzymic, gasliquid chromatographic, and high performance liquid chromatographic. Results showed that variability in sugar composition due to both degree of ripeness and method of analysis was greater for sucrose than for glucose and fructose. Sucrose was almost completely hydrolyzed in the overripe fruit. Acid results showed that there was little variation in citric acid levels due to ripeness or method of analysis; malic acid, however, decreased greatly in overripe fruit. Malic acid also showed high variability due to method of analysis. The glucose:fructose ratios for the underripe, ripe, and overripe fruit were 0.86,0.92, and 0.60, respectively. The citric:malic ratios were 1.58, 2.39, and 14.86 for the underripe, ripe, and overripe stages, respectively.


1999 ◽  
Vol 62 (5) ◽  
pp. 451-455 ◽  
Author(s):  
JEE-HOON RYU ◽  
YUN DENG ◽  
LARRY R. BEUCHAT

A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain E0139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37°C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of ≤5.4, ≤4.5, ≤4.2, or ≤4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P ≤ 0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Majid Talebi ◽  
Ebrahim Hadavi ◽  
Nima Jaafari

Foliar application of two levels of citric acid and malic acid (100 or 300 mg L−1) was investigated on flower stem height, plant height, flower performance and yield indices (fresh yield, dry yield and root to shoot ratio) ofGazania. Distilled water was applied as control treatment. Multivariate analysis revealed that while the experimental treatments had no significant effect on fresh weight and the flower count, the plant dry weight was significantly increased by 300 mg L−1malic acid. Citric acid at 100 and 300 mg L−1and 300 mg L−1malic acid increased the root fresh weight significantly. Both the plant height and peduncle length were significantly increased in all applied levels of citric acid and malic acid. The display time of flowers on the plant increased in all treatments compared to control treatment. The root to shoot ratio was increased significantly in 300 mg L−1citric acid compared to all other treatments. These findings confirm earlier reports that citric acid and malic acid as environmentally sound chemicals are effective on various aspects of growth and development of crops. Structural equations modeling is used in parallel to ANOVA to conclude the factor effects and the possible path of effects.


2011 ◽  
Vol 393-395 ◽  
pp. 709-712 ◽  
Author(s):  
Fu Xing Cui ◽  
Jin Feng Song ◽  
Ya Fen Guo ◽  
Jin Zhong Xu

The effects and mechanism of different concentration organic acids and organic salts solution on Al availability of dark brown forest soil were studied. It was resulted that, oxalic acid/oxalate and citric acid/citrate substantially stimulated soil Al release of dark brown forest soil. The effect of organic acids/salts on Al release would be strengthen with increasing of their concentrations.The contents of Al released from A1 horizon was higher than that from B horizon. Organic salt solutions had much higher effects than organic acid the same in concentration, i.e. citrate>citric acid, oxalate>oxalic acid. Therefore, the mechanism of organic acid/salts triggering release of soil Al was assumed to be dominated by complexation reactions of organic anions. Citric acid/ citrate had much higher effect than oxalic acid/ oxalate at same concentration to A1 and B horizons, i.e. citrate> oxalate, citric acid>oxalic acid, which was primarily related with the greater complexing capacities and dissociation constants of citric acid.


1990 ◽  
Vol 22 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Celina Dobrogowska ◽  
Loren G Hepler ◽  
Alexander Apelblat

Sign in / Sign up

Export Citation Format

Share Document