Evaluation of Different Weighted-Sum-of-Gray-Gases Formulations to Estimate the Planck-Mean Absorption Coefficient for CO2-H2O Mixtures

Author(s):  
Guilherme Fraga ◽  
Francis França ◽  
Pedro Coelho
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Samira Gharehkhani ◽  
Ali Nouri-Borujerdi ◽  
Salim Newaz Kazi ◽  
Hooman Yarmand

In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.


Author(s):  
Masoud Darbandi ◽  
Mohammad Bagher Barezban ◽  
Gerry E. Schneider

In this paper, the turbulent reacting flow in an industrial furnace is numerically simulated using the RANS equations. The two-equation standard k-ε and the eddy dissipation models are used respectively to close the turbulent closure problem and to consider the turbulence-chemistry interaction. The radiation transfer equation is solved using the discrete ordinates method (DOM). To calculate the radiation absorption coefficient in participating combustion gases, we use the spectral line-based weighted sum of grey gases (SLW) model and compare the achieved results with famous gray-based model, i.e., the weighted-sum-of-gray-gases (WSGG) model. The results of this research show that using the SLW model, the predicted heat transfer from the flame to the furnace walls is reduced due to the thermal radiation. So, the predicted temperature filed increases up to 5% near the outlet of furnace in comparison with the results of WSGG model, which is in more agreement with the experimental data. These results indicate that if one wishes to accurately predict the temperature field and the temperature sensitive quantities such as the NOx emission, one should use the spectral-based models to calculate the radiation absorption coefficient. The details are discussed in the results section.


1993 ◽  
Vol 115 (4) ◽  
pp. 1004-1012 ◽  
Author(s):  
M. K. Denison ◽  
B. W. Webb

This paper presents an approach for generating weighted-sum-of-gray gases (WSGG) models directly from the line-by-line spectra of H2O. Emphasis is placed on obtaining detailed spectral division among the gray gases. Thus, for a given model spectrum, the gray gas weights are determined as blackbody fractional functions for specific subline spectral regions at all temperatures. The model allows the absorption coefficient to be the basic radiative property rather than a transmissivity or band absorptance, etc., and can be used with any arbitrary solution method for the Radiative Transfer Equation (RTE). A single absorption cross section spectrum is assumed over the entire spatial domain in order to fix the subline spectral regions associated with a single spectral calculation. The error associated with this assumption is evaluated by comparison with line-by-line benchmarks for problems of nonisothermal and nonhomogeneous media.


Author(s):  
Anderson C. Mossi ◽  
Vinayak V. Barve ◽  
Marcelo M. Galarc¸a ◽  
Hora´cio A. Vielmo ◽  
Francis H. R. Franc¸a ◽  
...  

A calculation of the radiative source term in combustion processes is an important part of the simulation process, because high temperatures are involved and the coupling of radiation to chemistry affects the overall flame characteristics. While relatively simple gas absorption coefficient models have been used in the recent past, it is becoming clearer that more accurate gas models alter the distribution of radiative sources in the flame. To accurately evaluate the radiative losses, it is necessary to use gas models in which the gas absorption coefficient is wavelength dependent. Such analyses can be computationally expensive depending on the particular treatment of the spectral dependence. It is important to understand the relative costs and benefits of different treatment of these effects. In this work, the divergence of the radiative heat flux is calculated for a two-dimensional cylindrical axisymmetric chamber using four different models: a simple gray gas model, the weighted-sum-of-gray-gases (WSGG) model, the spectral line-based weighted-sum-of-gray-gases (SLW) model, and the cumulative wavenumber (CW) model. The gray gas model and the WSGG model are widely used in recent studies and in most commercial software, because they are simple to implement and provide fast results. In general, however, they are not able to accurately predict the radiative losses. On the other hand, the SLW and CW models detail the variations of the absorption coefficient with the wavelength, and can give more accurate answers for the radiative source term, but require bigger computational effort. The divergence of the radiative flux predictions are compared with these four models, using temperature and concentration fields obtained from previous numerical simulations. The overall differences in radiation properties and in the overall cost of computations are detailed.


Author(s):  
Robert E. Ogilvie

The search for an empirical absorption equation begins with the work of Siegbahn (1) in 1914. At that time Siegbahn showed that the value of (μ/ρ) for a given element could be expressed as a function of the wavelength (λ) of the x-ray photon by the following equationwhere C is a constant for a given material, which will have sudden jumps in value at critial absorption limits. Siegbahn found that n varied from 2.66 to 2.71 for various solids, and from 2.66 to 2.94 for various gases.Bragg and Pierce (2) , at this same time period, showed that their results on materials ranging from Al(13) to Au(79) could be represented by the followingwhere μa is the atomic absorption coefficient, Z the atomic number. Today equation (2) is known as the “Bragg-Pierce” Law. The exponent of 5/2(n) was questioned by many investigators, and that n should be closer to 3. The work of Wingardh (3) showed that the exponent of Z should be much lower, p = 2.95, however, this is much lower than that found by most investigators.


2020 ◽  
pp. 139-143

Natural dyes were followed and prepared from a pomegranate, purple carrot, and eggplant peel. The absorbance spectra was measured in the wavelength range 300-800 nm. The linear properties measurements of the prepared natural dye freestanding films were determined include absorption coefficient (α0), extinction coefficient (κ), and linear refraction index (n). The nonlinear refractive index n2 and nonlinear absorption coefficient β2 of the natural dyes in the water solution were measured by the optical z-scan technique under a pumped solid state laser at a laser wavelength of 532 nm. The results indicated that the pomegranate dye can be promising candidates for optical limiting applications with significantly low optical limiting of 3.5 mW.


Sign in / Sign up

Export Citation Format

Share Document