Influence of the fluid free surface on the nonlinear resonance curves of a flexible tank partially filled with fluid

Author(s):  
Ericka Hansen ◽  
Frederico Martins Alves da Silva
2017 ◽  
Vol 2017 ◽  
pp. 1-21
Author(s):  
Luis Fernando Paullo Muñoz ◽  
Paulo B. Gonçalves ◽  
Ricardo A. M. Silveira ◽  
Andréa Silva

The dynamic nonlinear response and stability of slender structures in the main resonance regions are a topic of importance in structural analysis. In complex problems, the determination of the response in the frequency domain indirectly obtained through analyses in time domain can lead to huge computational effort in large systems. In nonlinear cases, the response in the frequency domain becomes even more cumbersome because of the possibility of multiple solutions for certain forcing frequencies. Those solutions can be stable and unstable, in particular saddle-node bifurcation at the turning points along the resonance curves. In this work, an incremental technique for direct calculation of the nonlinear response in frequency domain of plane frames subjected to base excitation is proposed. The transformation of equations of motion to the frequency domain is made through the harmonic balance method in conjunction with the Galerkin method. The resulting system of nonlinear equations in terms of the modal amplitudes and forcing frequency is solved by the Newton-Raphson method together with an arc-length procedure to obtain the nonlinear resonance curves. Suitable examples are presented, and the influence of the frame geometric parameters and base motion on the nonlinear resonance curves is investigated.


1994 ◽  
Vol 279 ◽  
pp. 377-405 ◽  
Author(s):  
Paolo Sammarco ◽  
Chiang C. Mei ◽  
Karsten Trulsen

We examine the free surface flow over a fixed bed covered by rigid sinusoidal dunes. The mean current velocity is near the critical value at which the linearized theory predicts unbounded response. By allowing transients we examine the instability of the steady and nonlinear solution of Mei (1969) and the possibility of chaos when the current has a small oscillatory component.


Author(s):  
J. Jonathan Kobine

Results are presented from an experimental investigation of the motion of a shallow layer of water in a square tank that was oscillated horizontally with small amplitude at frequencies close to the natural frequency of the layer. The aim was to assess the validity of certain theoretical predictions relating to nonlinear resonance in shallow layers based on asymptotic analysis. These concern the hysteretic nature of the resonance profile and the existence of non-trivial oscillatory components associated with shock-like discontinuities in the derived solution for the free surface configuration. The experimental results support the theoretical predictions and show a coincidence in parameter space between the regions of hysteresis and oscillatory transition.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-1025-C5-1030 ◽  
Author(s):  
M. Wuttig ◽  
T. Suzuki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document