Self-Sensing Active Vibrations Control Using Electromagnetic Actuators

Author(s):  
Beatriz Marangoni ◽  
Felipe Carvalho ◽  
Marcus Vinicius Fernandes de Oliveira ◽  
Aldemir Ap Cavalini Jr ◽  
Valder Steffen Jr
1986 ◽  
Vol 108 (2) ◽  
pp. 230-231 ◽  
Author(s):  
A. V. Metcalfe ◽  
J. S. Burdess

A method for minimizing forced harmonic vibration of a rotor-bearing system by the application of external control forces is presented. The frequency of the vibration is assumed known. In cases of mass unbalance or bend in the shaft this will be shaft rotation frequency and can usually be monitored without difficulty. The control forces could be provided by electromagnetic actuators. The control strategy presented does not require any knowledge of the system parameters and, provided the uncontrolled system is stable, cannot destablize the system. Results from a simulation are shown.


2008 ◽  
Vol 61 ◽  
pp. 141-146
Author(s):  
Christian Bolzmacher ◽  
Karin Bauer ◽  
Ulrich Schmid ◽  
Helmut Seidel ◽  
Moustapha Hafez

The amplitudes of miniaturized electromagnetic actuators are clearly enhanced if the eigenfrequencies of the membrane are used for actuation. However, the bandwidth for such operation is very limited. This can be overcome to some extent by the employment of membranes with electrically tunable stiffness. In this context we investigated membranes of dielectric elastomer materials and present experimental results on the ability to change their pre-strain to shift the eigenmodes to lower frequencies upon activation. Furthermore, the viscoelastic properties of an acrylic and a silicone membrane are investigated and compared to dynamic experiments. The parameters for the stiffness and viscoelasticity are derived from the experimental creep data and incorporated in a hyperelastic material model. Using this adapted stress-strain relationship the membrane behavior over time can be evaluated for different loading as well as pre-strain conditions.


2011 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastio Hinov ◽  
Iosko Balabozov ◽  
Kristina Krasteva

Several constructions of electromagnetic actuators with moving permanent magnet for Braille screen are studied. All they are formed from a basic one that consists of two coils, core and moving permanent magnet. The finite element method is used for modeling of the magnetic field and for obtaining the electromagnetic force acting on the mover. The static force-stroke characteristics are obtained for four different constructions of the actuator. The constructions with ferromagnetic disc between the coils ensure greater force than the ones without disc and can reach the required minimum force.


2016 ◽  
Vol 1140 ◽  
pp. 384-391 ◽  
Author(s):  
Andreas Heyder ◽  
Stefan Steinbeck ◽  
Matthaeus Brela ◽  
Alexander Meyer ◽  
Sandra Abersfelder ◽  
...  

Electromagnetic actuators are used in a variety of technical applications especially in the automotive industry. In-line process control methods are an essential component of the Lean and Six Sigma methodology to ensure process quality. However, the current state of the art in process and quality control is largely limited to end-of-line measurements of the force output. Analysing the magnetic stray field is a promising method that can be used to draw conclusions on the properties and defects of the flux-conducting magnetic materials. This phenomenon can potentially be used to identify defects in magnetic actuators thus allowing inline quality-monitoring. In order to realize this feature, patterns in the magnetic stray field of an actuator have to be identified and linked to a specific defect. The resulting challenge is the analysis of large datasets in order to characterize the stray field anomalies. This paper summarizes the results of a study on linear magnetic actuators trying to prove a relationship between parasitic magnetic stray field and the overall force output of an actuator by analysing the data with statistical methods. The findings of this study suggest that certain statistical methods, like regression, are not well suited to build a prediction model for defects in actuators using a similar approach of measuring stray field outside the actuator. This is mainly due to the fact that prerequisites for model building are difficult to full fill within the context of stray field analysis. Nevertheless, the findings also suggest that methods of exploratory data analysis can be used to derive quality relevant information from data of stray field measurements. The paper elaborates on the problem of defining a population, choosing variables for model building, as well as model error.


Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 17 ◽  
Author(s):  
Niklas König ◽  
Matthias Nienhaus ◽  
Emanuele Grasso

Techniques for estimating the plunger position have successfully proven to support operation and monitoring of electromagnetic actuators without the necessity of additional sensors. Sophisticated techniques in this field make use of an oversampled measurement of the rippled driving current in order to reconstruct the position. However, oversampling algorithms place high demands on AD converters and require significant computational effort which are not desirable in low-cost actuation systems. Moreover, such low-cost actuators are affected by eddy currents and parasitic capacitances, which influence the current ripple significantly. Therefore, in this work, those current ripples are modeled and analyzed extensively taking into account those effects. The Integrator-Based Direct Inductance Measurement (IDIM) technique, used for processing the current ripples, is presented and compared experimentally to an oversampling technique in terms of noise robustness and implementation effort. A practical use case scenario in terms of a sensorless end-position detection for a switching solenoid is discussed and evaluated. The obtained results prove that the IDIM technique outperforms oversampling algorithms under certain conditions in terms of noise robustness, thereby requiring less sampling and calculation effort. The IDIM technique is shown to provide a robust position estimation in low-cost applications as in the presented example involving a end-position detection.


2020 ◽  
Vol 10 (20) ◽  
pp. 7342
Author(s):  
Yamin Zhao ◽  
Junning Cui ◽  
Junchao Zhao ◽  
Xingyuan Bian ◽  
Limin Zou

To improve the low-frequency isolation performance of optical platforms, an electromagnetic active-negative-stiffness generator (EANSG) was proposed, using nano-resolution laser interferometry sensors to monitor the micro-vibration of an optical platform, and precision electromagnetic actuators integrated with a relative displacement feedback strategy to counteract the positive stiffness of pneumatic springs within a micro-vibration stroke, thereby producing high-static-low-dynamic stiffness characteristics. The effectiveness of the method was verified by both theoretical and experimental analyses. The experimental results show that the vertical natural frequency of the optical platform was reduced from 2.00 to 1.37 Hz, the root mean square of displacement was reduced from 1.28 to 0.69 μm, and the root mean square of velocity was reduced from 14.60 to 9.33 μm/s, proving that the proposed method can effectively enhance the low frequency isolation performance of optical platforms.


Sign in / Sign up

Export Citation Format

Share Document