Load distribution in cylindrical roller bearing with EHD lubricated contact force

Author(s):  
Natália Akemi Hoshikawa Tsuha ◽  
Fabio Nonato ◽  
Katia Lucchesi Cavalca Dedini
2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Simon Kabus ◽  
Claus B. W. Pedersen

The internal load distribution in rolling bearings has a high impact on the bearing fatigue life. This study presents a method to optimize roller bearing housing design in order to maximize the bearing fatigue life by ensuring an optimal internal load distribution. An FE-model of a cylindrical roller bearing utilizing nonlinear springs in the roller modeling is presented, which is capable of simulating the bearing load distribution efficiently. The optimal load distribution is achieved by specifying the desired internal load distribution as design constraints in a topology optimization of the bearing housing design. The superiority of the method is clearly demonstrated through case studies involving a cylindrical roller bearing, where it is shown that the fatigue life is increased and the bearing housing mass and roller contact misalignment is reduced.


1976 ◽  
Vol 98 (4) ◽  
pp. 538-543 ◽  
Author(s):  
A. Suzuki ◽  
A. Seireg

This study deals with an experimental investigation of a cylindrical roller bearing having annular rollers. Comparisons are made with a solid roller bearing having the same configuration and dimensions. Radial deformations and load distribution between rollers are measured under static load and compared with numerical solutions. Bearing temperature rise and roller wear are investigated in a specially designed tester. A radioactive tracing technique is utilized for the measurement of roller wear and proved to be reliable for wear detection. The results show several advantages of annular rollers over the solid rollers.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 14 ◽  
Author(s):  
Hans Meeus ◽  
Jakob Fiszer ◽  
Gabriël Van De Velde ◽  
Björn Verrelst ◽  
Wim Desmet ◽  
...  

Turbomachine rotors, supported by little damped rolling element bearings, are generally sensitive to unbalance excitation. Accordingly, most machines incorporate squeeze film damper technology to dissipate mechanical energy caused by rotor vibrations and to ensure stable operation. When developing a novel geared turbomachine able to cover a large power range, a uniform mechanical drivetrain needs to perform well over the large operational loading range. Especially, the rotor support, containing a squeeze film damper and cylindrical roller bearing in series, is of vital importance in this respect. Thus, the direct objective of this research project was to map the performance of the envisioned rotor support by estimating the damping ratio based on the simulated and measured vibration response during run-up. An academic test rig was developed to provide an in-depth analysis on the key components in a more controlled setting. Both the numerical simulation and measurement results exposed severe vibration problems for an insufficiently radial loaded bearing due to a pronounced anisotropic bearing stiffness. As a result, a split first whirl mode arose with its backward component heavily triggered by the synchronous unbalance excitation. Hence, the proposed SFD does not function properly in the lower radial loading range. Increasing the static load on the bearing or providing a modified rotor support for the lower power variants will help mitigating the vibration issues.


Author(s):  
Wenjun Gao ◽  
Shuo Zhang ◽  
Xiaohang Li ◽  
Zhenxia Liu

In cylindrical roller bearings, the drag effect may be induced by the rolling element translating in a fluid environment of the bearing cavity. In this article, the computational fluid dynamics method and experimental tests are employed to analyse its flow characteristics and pressure distribution. The results indicate that the pressure difference between the windward side and the leeward side of the cylinder is raised in view of it blocking the flow field. Four whirl vortexes are formed in four outlets of two wedge-shaped areas between the front part of the cylindrical surface and adjacent walls for the cylinder of L/ D = 1.5 at Re = 4.5 × 103. Vortex shedding is found in the direction of cylinder axis at Re = 4.5 × 104. The relationship between drag coefficient and Reynolds number is illustrated, obviously higher than that of the two-dimensional cylinder in open space.


1979 ◽  
Vol 101 (3) ◽  
pp. 293-302 ◽  
Author(s):  
P. K. Gupta

An analytical formulation for the roller motion in a cylindrical roller bearing is presented in terms of the classical differential equations of motion. Roller-race interaction is analyzed in detail and the resulting normal force and moment vectors are determined. Elastohydrodynamic traction models are considered in determining the roller-race tractive forces and moments. Formulation for the roller end and race flange interaction during skewing of the roller is also considered. Roller-cage interactions are assumed to be either hydrodynamic or fully metallic. Simple relationships are used to determine the churning and drag losses.


Sign in / Sign up

Export Citation Format

Share Document