EFFECT OF MOISTURE AND PARTICLE SIZE ON THE COMBUSTION CHARACTERISTICS OF SEWAGE SLUDGE IN A FIXED BED

Author(s):  
Joana Freitas Campana ◽  
Kaio Pandolfi Pessotti ◽  
Carlos Eduardo Silva Abreu ◽  
Patrick de Jesus
1982 ◽  
Vol 14 (6-7) ◽  
pp. 475-489 ◽  
Author(s):  
H W Campbell ◽  
P J Crescuolo

Rheological measurements were conducted on a variety of anaerobically digested sewage sludges to evaluate the potential use of rheology in describing the effects of chemical conditioning on the physical characteristics of sludges. The objectives of the study were to evaluate the influence of the method of chemical conditioning on rheological measurements; to determine the response of the viscometer system to changes in the instrument variables; and to evaluate interrelationships between rheology and other physical properties. All rheological measurements were made using a coaxial rotational viscometer. Evaluation of a variety of test procedures identified that both the method of adding chemical conditioners, and the acceleration rate of the rotational viscometer, could significantly alter the shape of the rheograms. A suggested methodology was identified and selected samples were analyzed in triplicate to test the reproducibility of the procedures. Existing mathematical models do not adequately describe the variety of flow behaviour patterns observed with sewage sludge. The concepts of yield stress and apparent viscosity also have limited value due to problems of definition and calculation. A parameter termed the “instantaneous viscosity”, defined as the derivative of the flow curve, is suggested as being more suitable for describing sludge behaviour. The relationships between chemical conditioning, particle size distribution and applied shear were explored. As polymer addition increased, the sludge particles became more susceptible to shear breakup. The extent of particle size reduction was a function of the rate of shear and the time during which the shear was maintained.


2006 ◽  
Vol 144 (2) ◽  
pp. 545-553 ◽  
Author(s):  
G. Ahlberg ◽  
O. Gustafsson ◽  
P. Wedel
Keyword(s):  

2015 ◽  
Author(s):  
Luz M. Ahumada ◽  
Arnaldo Verdeza ◽  
Antonio J. Bula

This paper studied, through an experiment design, the significance of particle size, air speed and reactor arrangement for palm shell micro-gasification process in order to optimize the heating value of the syngas obtained. The range of variables was 8 to 13 mm for particle size, 0.8–1.4m/s for air velocity, and updraft or downdraft for the reactor type. It was found that the particle size and air velocity factors were the most significant in the optimization of the output variable, syngas heating value. A heating value of 2.69MJ / Nm3 was obtained using a fixed bed downdraft reactor, with a particle size of 13 mm and 1.4 m/s for air speed; verification of the optimum point of operation under these conditions verified that these operating conditions favor the production of a gas with a high energy value.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Nattasut Mantananont ◽  
Savitri Garivait ◽  
Suthum Patumsawad

This study is focused on the emission of fixed bed combustor batch operated. Real-time analyser ELPI (electrical low-pressure impactor) system was used to size-segregated particulate matter emission ranging from 40 nm to 10 μm. The results show that total number concentration were3.4×103,1.6×104, and1.5×105 particles/cm3⋅kgfuel, while total mass of particles were 12.2, 8.0, and 6.5 mg/Nm3⋅kgfuelfor combustion of lignite, rice husk and bagasse, respectively. But it can be noticed that cofiring released more particulate matter. Meanwhile it was found that the effect of ratio of over-fired air to total air supply is more pronounced, since decrease in this ratio, the amount of particles are decreased significantly. For particle size distribution, it can be observed that submicron-sized particles dominate and the most prevailing size is in the range: 50 nm<Dp<100 nm, for lignite and agricultural residues. However, during cofiring of fuel mixture at 70% rice husk mass concentration, it is found that there are two major fractions of particle size; 40 nm<Dp<70 nm and 0.2 μm<Dp<0.5 μm. The analysis of particle morphology showed that the isolate shape of submicron particle produced during lignite combustion is characterised by different geometries such as round, capsule, rod, flake-like, whereas the spherical shape is obtained with combustion of rice husk.


2013 ◽  
Vol 805-806 ◽  
pp. 200-207
Author(s):  
Bing Zhang ◽  
Guang Wu Lu

Under different conditions,combustion characteristics of the single biomass,the single coal and the mixture of biomass and coal were analyzed by using thermogravimetric analyzer. Combustion characteristic parameters of the sawdust,the rice husk,the rice straw and the Baisha coal of Leiyang were studied,including ignition temperature,the maximum rate of combustion temperature,the burnout temperature and so on. The experimental results show that the biomass burning temperature is lower than the Baisha coal and there are two obvious weight loss phases in the combustion process of the biomass. However,there is only one in the coal. The ignition temperature and time of the coal can be reduced ,the temperature range of the entire combustion can be extended,the coal can be burnout more well and the fuel combustion characteristic can be optimized by blending combustion. With the increase of biomass mixing proportion, the ignition temperature of mixing samples was decreased more obviously. Moreover,when the biomass particle size becomes R200,compared with R90 particle size under the same blending ratio,its ignition temperature is more lower.


2019 ◽  
Vol 11 (1) ◽  
pp. 56-65
Author(s):  
Daniele Martins Firmiano ◽  
Gabriela Marques Bittencourt ◽  
Alessandra Lopes de Oliveira

Objective: This research used the Pressurized Liquid Extraction process (PLE) to obtain cambuci extracts rich in phenolic compounds and, consequently, with high antioxidant activity. Methods: We determined the centesimal composition and the mean particle size of the dried and crushed sample for characterization of the fixed bed extractor. Extractions with pressurized ethanol were performed following a Central Composite Design (CCD) with temperature (60 °C at the center point with ± 10 °C amplitude) and the contact time between the solvent and the matrix (6 min at the center point with ± 2 min amplitude) as independent variables in the process. The Total Phenolic Content (TPC) of compounds and antioxidant activity were determined. Results: The mean particle size of the cambuci in the PLE was 263.4 μm with apparent and real densities of 32.42 g/cm3 and 1.62 g/cm3, respectively, resulting in a fixed bed porosity of 0.43. The centesimal composition of the comminuted and dried sample was 12.5 ± 0.1% moisture, 3.2 ± 0.2% ash, 3.35 ± 0.07% crude protein, 10.32 ± 0.08% crude fiber and 0.35 ± 0.04% ethereal extract. The highest extraction yield (41.7%) was obtained by using the binomial 70 ºC with 8 min of solvent contact in three batches. Extracts with the highest TPC (6501.10 mg AGE/100 g sample) were obtained by the binomial 74 °C with 6 min of contact; the binomial 50 °C with 4 min of contact gave rise to the extract with the highest antioxidant activity. The CCD showed high yield extracts with high antioxidant activity and a high total phenolic compound content. Conclusion: With the use of the proposed experimental design, it was possible to optimize the extraction of total phenolic compounds from the sample.


2009 ◽  
Vol 2009.84 (0) ◽  
pp. _5-26_
Author(s):  
Takahiro MURAKAMI ◽  
Akio KITAJIMA ◽  
Yoshizo SUZUKI ◽  
Hidekazu NAGASAWA ◽  
Takafumi YAMAMOTO ◽  
...  

2008 ◽  
Vol 22 (4) ◽  
pp. 2840-2850 ◽  
Author(s):  
María Aznar ◽  
Joan J. Manyà ◽  
Gorka García ◽  
José L. Sánchez ◽  
M. Benita Murillo

Sign in / Sign up

Export Citation Format

Share Document