scholarly journals The Suitability of Double-Layer Space Structures for Super-Tall Buildings:      A Study from Structural and Building Systems Integration Perspectives

2021 ◽  
Author(s):  
◽  
Hendry Yahya Sutjiadi

<p>As buildings rise higher, designers face two major issues. Firstly, how to design efficient structures to resist the lateral loads that impact so greatly on tall buildings. Secondly, how to effectively integrate building systems, which often consume large amounts of space in taller buildings and potentially detract from the building aesthetics. Double‐layer space structures have the potential to address these issues due to several beneficial design characteristics. As three‐dimensional structures, double‐layer space structures are rigid and structurally efficient. They can also integrate with other building systems by using the inherent structural cavities to accommodate services components and contribute a particular architectural aesthetic if their regular pattern is exposed.  Double‐layer space structures have been used in long‐span structure buildings, but have yet to be applied as vertical structures for super‐tall buildings. Only two projects, proposed by Kahn and Tying, and Swenson, have applied double‐layer space structures as vertical structures in high‐rise buildings. However, they have not yet been executed and no literature has discussed the feasibility of the application of this structural system to supertall buildings. This situation leads to the research question; “Are double‐layer space structures suitable for super‐tall buildings?” To answer this question, a long‐term study with multidisciplinary knowledge, involving surveys of public opinion, and possibly real pilot projects would be required. This research focuses only on structural efficiency and systems integration as the initial step of the study of vertical double‐layer space structures in super‐tall buildings. The main objective of this research is to analyse the efficiency of this structural system, especially compared to other current tall structural systems. The second objective is to investigate to what extent these structures can integrate with other building systems as well as a discussion on advantages and disadvantages of the integration. The significance of this research is to provide initial scientific information for designers about the possibility of using double‐layer space structures as a structural system of super‐tall building.  A research methodology including both quantitative and qualitative approaches is employed to measure the structural efficiency of vertical double‐layer space structures and to assess their potential to integrate with other building systems. This research covers structural aspects, building services systems including fire safety and approaches to energy efficiency, architectural integration, and construction.  A quantitative approach by structural design and analysis, and comparison of double‐layer space structures with other structural systems is used to analyse structural efficiency. Case studies using the structural models of two 100‐storey double‐layer space structure buildings with different values of slenderness are designed and analysed using the computer software, ETABS. Other currently used structural systems, a bundled‐tube, a braced‐tube and a diagrid, are also designed using the same configuration and their structural analysis findings are compared to those of double‐layer space structures. Services systems, including HVAC, stairs and elevators, are also designed and integrated with the structure. The systems integration aspect of this research in double‐layer space structure buildings is analysed using a qualitative approach in three main steps. The first step is a review of relevant literature covering systems integration and current technologies in tall buildings. Based on this review, systems integration in double‐layer space structure buildings in general and the 100‐storey case study buildings in particular are explored using computer models. As the final step, the advantages and disadvantages of the systems integration in the designed case studies are discussed.  These case studies are designed in order to represent current super‐tall buildings and recent technologies in high‐rise buildings. The structural models of 100‐storey buildings are relevant for buildings in the approximate range of 75 to 125 storeys or 300 to 500 metres high; the majority of current super‐tall buildings have been built in that range of heights. Recent technologies that are commonly used in super‐tall buildings, for example Centralised Air Handling and Localised Air Handling for HVAC system, double‐decking and sky lobbies for elevator system, and various façade systems, are adopted in these case studies. The aim is The Suitability of Double‐layer Space Structures for Super‐tall Buildings to investigate if double‐layer space structures can accommodate building components of current technologies.  The results of this research show that double‐layer space structures are efficient where applied in super‐tall buildings when compared to other existing structural systems. Doublelayer space structures can also integrate with services components. The case study design shows how larger usable floor areas than those in typical tall buildings can be provided by positioning the majority of services and structural components within the space structure on the perimeter of the building. In terms of fire safety, positioning fire safety and egress systems in two different locations far apart, as proposed in this research, increases their reliability. Double‐layer space structures are highly redundant structures that enable loads to be transferred through other structural members if several structural members collapse. This advantage minimises the possibility of progressive collapse. The ability of double‐layer space structures to visually and physically integrate with architectural components and aspects like façade, interior space and building geometry in various ways is also explored. In terms of construction, simple connections and construction methods can be applied to double‐layer space structures leading to competitive construction costs.  The research concludes by discussing the advantages and disadvantages of double‐layer space structures for super‐tall buildings and concludes that double‐layer space structures are indeed suitable for this application within the scope of this research. However, the study also recommends future research to address issues that are not covered in this research.</p>

2021 ◽  
Author(s):  
◽  
Hendry Yahya Sutjiadi

<p>As buildings rise higher, designers face two major issues. Firstly, how to design efficient structures to resist the lateral loads that impact so greatly on tall buildings. Secondly, how to effectively integrate building systems, which often consume large amounts of space in taller buildings and potentially detract from the building aesthetics. Double‐layer space structures have the potential to address these issues due to several beneficial design characteristics. As three‐dimensional structures, double‐layer space structures are rigid and structurally efficient. They can also integrate with other building systems by using the inherent structural cavities to accommodate services components and contribute a particular architectural aesthetic if their regular pattern is exposed.  Double‐layer space structures have been used in long‐span structure buildings, but have yet to be applied as vertical structures for super‐tall buildings. Only two projects, proposed by Kahn and Tying, and Swenson, have applied double‐layer space structures as vertical structures in high‐rise buildings. However, they have not yet been executed and no literature has discussed the feasibility of the application of this structural system to supertall buildings. This situation leads to the research question; “Are double‐layer space structures suitable for super‐tall buildings?” To answer this question, a long‐term study with multidisciplinary knowledge, involving surveys of public opinion, and possibly real pilot projects would be required. This research focuses only on structural efficiency and systems integration as the initial step of the study of vertical double‐layer space structures in super‐tall buildings. The main objective of this research is to analyse the efficiency of this structural system, especially compared to other current tall structural systems. The second objective is to investigate to what extent these structures can integrate with other building systems as well as a discussion on advantages and disadvantages of the integration. The significance of this research is to provide initial scientific information for designers about the possibility of using double‐layer space structures as a structural system of super‐tall building.  A research methodology including both quantitative and qualitative approaches is employed to measure the structural efficiency of vertical double‐layer space structures and to assess their potential to integrate with other building systems. This research covers structural aspects, building services systems including fire safety and approaches to energy efficiency, architectural integration, and construction.  A quantitative approach by structural design and analysis, and comparison of double‐layer space structures with other structural systems is used to analyse structural efficiency. Case studies using the structural models of two 100‐storey double‐layer space structure buildings with different values of slenderness are designed and analysed using the computer software, ETABS. Other currently used structural systems, a bundled‐tube, a braced‐tube and a diagrid, are also designed using the same configuration and their structural analysis findings are compared to those of double‐layer space structures. Services systems, including HVAC, stairs and elevators, are also designed and integrated with the structure. The systems integration aspect of this research in double‐layer space structure buildings is analysed using a qualitative approach in three main steps. The first step is a review of relevant literature covering systems integration and current technologies in tall buildings. Based on this review, systems integration in double‐layer space structure buildings in general and the 100‐storey case study buildings in particular are explored using computer models. As the final step, the advantages and disadvantages of the systems integration in the designed case studies are discussed.  These case studies are designed in order to represent current super‐tall buildings and recent technologies in high‐rise buildings. The structural models of 100‐storey buildings are relevant for buildings in the approximate range of 75 to 125 storeys or 300 to 500 metres high; the majority of current super‐tall buildings have been built in that range of heights. Recent technologies that are commonly used in super‐tall buildings, for example Centralised Air Handling and Localised Air Handling for HVAC system, double‐decking and sky lobbies for elevator system, and various façade systems, are adopted in these case studies. The aim is The Suitability of Double‐layer Space Structures for Super‐tall Buildings to investigate if double‐layer space structures can accommodate building components of current technologies.  The results of this research show that double‐layer space structures are efficient where applied in super‐tall buildings when compared to other existing structural systems. Doublelayer space structures can also integrate with services components. The case study design shows how larger usable floor areas than those in typical tall buildings can be provided by positioning the majority of services and structural components within the space structure on the perimeter of the building. In terms of fire safety, positioning fire safety and egress systems in two different locations far apart, as proposed in this research, increases their reliability. Double‐layer space structures are highly redundant structures that enable loads to be transferred through other structural members if several structural members collapse. This advantage minimises the possibility of progressive collapse. The ability of double‐layer space structures to visually and physically integrate with architectural components and aspects like façade, interior space and building geometry in various ways is also explored. In terms of construction, simple connections and construction methods can be applied to double‐layer space structures leading to competitive construction costs.  The research concludes by discussing the advantages and disadvantages of double‐layer space structures for super‐tall buildings and concludes that double‐layer space structures are indeed suitable for this application within the scope of this research. However, the study also recommends future research to address issues that are not covered in this research.</p>


2020 ◽  
Vol 11 (1) ◽  
pp. 278
Author(s):  
Ivan Hafner ◽  
Anđelko Vlašić ◽  
Tomislav Kišiček ◽  
Tvrtko Renić

Horizontal loads such as earthquake and wind are considered dominant loads for the design of tall buildings. One of the most efficient structural systems in this regard is the tube structural system. Even though such systems have a high resistance when it comes to horizontal loads, the shear lag effect that is characterized by an incomplete and uneven activation of vertical elements may cause a series of problems such as the deformation of internal panels and secondary structural elements, which cumulatively grow with the height of the building. In this paper, the shear lag effect in a typical tube structure will be observed and analyzed on a series of different numerical models. A parametric analysis will be conducted with a great number of variations in the structural elements and building layout, for the purpose of giving recommendations for an optimal design of a tube structural system.


1996 ◽  
Vol 11 (1-2) ◽  
pp. 241-250
Author(s):  
Janusz Rebielak

Proposals for forming various types of bar space structures, which could be used as building structures of different functional purposes are the subjects of this paper. The systems proposed have been developed with the aim of applying them in the design of structural systems for large span covers and high-rise buildings. The essential aims of forming large span cover structures is to obtain systems which would allow building these covers using relatively short bars. In the paper some new configuations of such space structures are presented. The most important factor in the design of the structural system of a tall building is the need to provide a comparatively slender structure with appropriate great rigidity. Some proposals of application of space structures as structures of high-rise buildings are presented in the paper.


2002 ◽  
Vol 29 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Aftab A Mufti ◽  
Baidar Bakht

Tall buildings, or skyscrapers, are icons of cities, symbols of corporate power, and a mark of national pride. Certain skyscrapers, such as the John Hancock Center and the Sears Tower in Chicago, are also marvels of engineering that have paved the way for ever increasing heights of structural systems. Since the 1960s, a series of new structural systems has been introduced with the objective of achieving economically-competitive and aesthetically-pleasing tall buildings without compromising safety. One of the great structural engineers responsible for the new structural systems was Dr. Fazlur Rahman Khan. This paper provides a biographical sketch of Dr. Khan and discusses some of his innovations pertaining to high-rise buildings. It shows that his contributions led to a new vertical scale for the modern day city.Key words: aesthetics, architecture, innovation, structural system, tall building.


1998 ◽  
Vol 1618 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Mark Hickman ◽  
Sam Tabibnia ◽  
Theodore Day

The rationale behind the current research and development of interface standards for the public transit industry is explored. Recent efforts to define an information systems architecture for public transit have not sufficiently discussed the underlying need for information system standards and what impacts these standards might have on the transit industry as well as on vendors. Both advantages and disadvantages to the development of these standards are identified. For public transit agencies, there appears to be a well-reasoned yet unsupported belief that interface standards will be beneficial for systems integration. To explore the impacts for vendors, a survey was developed and fielded to learn about the characteristics of products and vendor attitudes toward interface standards. The results, though not conclusive, suggest that vendors are willing to consider standards; however, needed product customization and more comprehensive systems are important factors weighing against open interface standards. Also reported are three case studies of recent technology applications in the San Francisco Bay Area in which experiences with technical system design and systems integration are described. These case studies strongly suggest that key factors such as market timing, vendor-agency communication, and “learning by doing” affect the development of interface requirements and standards for the transit industry.


2015 ◽  
Vol 31 (3) ◽  
pp. 1309-1336 ◽  
Author(s):  
Nilesh Shome ◽  
Nirmal Jayaram ◽  
Helmut Krawinkler ◽  
Mohsen Rahnama

As part of the PEER Center's Tall Building Initiative (TBI) project, practicing engineers designed three structural systems, each based on commonly used codes and guidelines, in addition to the guidelines developed by PEER. The designs were analyzed by three research teams, using a set of 75 ground-motion pairs, to predict response parameters for evaluating the performance of tall buildings. This study focuses on analytically estimating the seismic losses to these buildings to assess their relative seismic performance. The loss assessment process follows a comprehensive simulation approach that takes into account several random variables, such as building response, repair costs, etc. Throughout this study, epistemic and aleatory uncertainties in the random variables are accounted for in order to quantify those in loss estimates. Based on the dollar-loss results, the performance of the dual-system building is compared and contrasted with that of the other building systems considered in the PEER study.


1993 ◽  
Vol 8 (3) ◽  
pp. 177-179
Author(s):  
Abraham Ben-Arroyo

In reinforced concrete buildings, the floor and roof construction are the major components of the structural system. In order to reduce dead weight and improve the total behaviour of the system, a new double-layer grid slab concept has been developed and tested. The proposed new method uses upper and lower thin layers of concrete connected by inclined ribs and thus creating a two-way space structure configuration.


2010 ◽  
Vol 150-151 ◽  
pp. 1096-1100
Author(s):  
Wen Xue Du ◽  
Ling Xin Zhang

In order to obtain correct nonlinear performance of tall building at seismic zone, several typical planar and elevation irregular tall buildings with different structural system are mainly discussed in the paper. Effect on the seismic response of structures due to the hazard bearing structure simplification are analyzed so as to obtain nonlinear performance accurately of structures for the seismic risk analysis, important influencing factors are also discussed followed. The results show that it is efficient to forecast the performance of tall buildings for the seismic risk analysis at seismic zone after Wen-Chuan Earthquake in China cities.


Author(s):  
Najmadeen Mohammed Saeed ◽  
Shna Jabar Abdulkarim ◽  
Hawkar Ali Haji

Space structures such as double layer dome is light and active structural system that used for various structural application, for instance structural covers large areas such as exhibition halls, stadium and concert halls. They are aesthetically pleasing in appearance as well as the architectural requirement, in which tolerances of structural shape under changing service conditions are very significant, which high appearance accuracy is requested in some applications. Due to many reasons such as loading, these type of structures may suffer from a noticeable deflection, which leads to a significant potential undesired appearance of the shape. In this situation, the displacements may need to be reduced or eliminated. In this study, by applying the shape adjustment technique that its scheme is depend on the linear force method, shape restoration is performed to the double layer dome model in three different cases corresponding to the directions of loadings were considered. The improvement of controlling nodal displacement can be achieved through using a rather simple and direct method, due to calculating necessary length of actuators by applying a single formulation. It is found that if the number of provided actuators are satisfactory, controlling of all the displaced joints could be performed by a very small percentage of discrepancy, even if the controlled joints connection is not direct with the adjustable members. The technique of shape adjustment is very efficient for double layer dome model, and it can roughly eliminate the displacement of definite joints (Exterior joints only) by simply changing the length of certain bars by eo amount


Sign in / Sign up

Export Citation Format

Share Document