scholarly journals The Volcano‐Tectonic Evolution of the Macquarie Ridge  Complex, Australia‐Pacific Plate Boundary South of  New Zealand

2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>The Macquarie Ridge Complex (MRC) forms the submarine expression of the Australia‐Pacific plate boundary south of New Zealand, comprising a rugged bathymetry made up of numerous seamounts along its length. Tectonic plate reconstructions show that the plate boundary evolved from divergent to transpressional relative plate motion from ca. 40 – 6 Ma. However, only limited geological observation of the products of past seafloor spreading and present transpressional deformation has been achieved. This study presents new high-resolution multibeam, photographic, petrologic and geochemical data for 10 seamounts located along the MRC in order to elucidate the current nature and evolution of the plate boundary. Seamounts are oriented parallel to the plate boundary, characterized by elongate forms, and deformed by transform faulting. Three guyot‐type seamounts display summit plateaux that were formed by wave and current erosion. MRC seafloor is composed of alkaline to sub‐alkaline basaltic pillow, massive and sheet lava flows, lava talus, volcaniclastic breccia, diabase and gabbro. This oceanic crust was formed during effusive mid‐ocean ridge volcanism at the relic Macquarie spreading centre and has since been sheared, accreted and exhumed along the modern transpressional plate boundary. Major element systematics indicate samples originated from spatially distinct magmatic sources and have since been juxtaposed at seamounts due to transpressional relative plate motion. MRC seamounts have formed as discrete elevations as a result of dip‐slip and strike‐slip faulting of the ridge axis. Thus, MRC seamounts are volcanic in origin but are now the morphological manifestations of tectonic and geomorphic processes. Petrologic and geochemical characteristics of volcanic glass samples from the MRC indicate that both effusive and explosive eruption styles operated at the relic Macquarie spreading centre. Primitive and sub‐alkaline to transitional basaltic magma that rose efficiently to the seafloor was erupted effusively and cooled to form lava flows with low vesicle and phenocryst contents or was granulated on contact with seawater to form hyaloclasts deposited in volcaniclastic breccias. More alkaline magmas that underwent crystal fractionation and volatile exsolution in shallow reservoirs were fragmented and erupted during submarine hawaiian‐type eruptions. Such a scenario is likely to have occurred during the final stages of magmatism at the Australia‐Pacific plate boundary south of New Zealand when seafloor spreading was ultraslow or had ceased, which induced low degrees of partial melting and retarded magma ascent rates. All MRC samples display enriched mid‐ocean ridge basalt (E‐MORB) trace element characteristics. The sample suite can be divided into two groups, with Group 1 samples distinguished from Group 2 samples by their lower concentrations of highly incompatible trace elements, flatter LREE slopes, higher MgO contents and lower alkali element contents. Group 1 basalts were derived from low degree partial melting of spinel lherzolite generated during the late stages of mid‐ocean ridge volcanism at the plate boundary when seafloor spreading rates were slow to ultraslow (full spreading rate < 20 mm yr⁻¹). Group 2 basalts were derived from low degree partial melting of spinel lherzolite, mixed with small amounts of very low degree partial melting of garnet lherzolite, during post‐spreading volcanism at the MRC. Remnant heat from previous seafloor spreading induced buoyant ascent of the sub‐ridge mantle and enriched heterogeneities were preferentially tapped by the ensuing low melt fractions. Magma ascent was stalled due to the cessation of extension at the ridge and the melts underwent crystal fractionation prior to eruption, which accounts for the lower MgO contents of Group 2 basalts. The pervasive incompatible element‐enrichment of MRC basalts and similarity to lavas from fossil spreading ridges in the eastern Pacific Ocean may reflect regional enrichment of the Pacific upper mantle.</p>

2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>The Macquarie Ridge Complex (MRC) forms the submarine expression of the Australia‐Pacific plate boundary south of New Zealand, comprising a rugged bathymetry made up of numerous seamounts along its length. Tectonic plate reconstructions show that the plate boundary evolved from divergent to transpressional relative plate motion from ca. 40 – 6 Ma. However, only limited geological observation of the products of past seafloor spreading and present transpressional deformation has been achieved. This study presents new high-resolution multibeam, photographic, petrologic and geochemical data for 10 seamounts located along the MRC in order to elucidate the current nature and evolution of the plate boundary. Seamounts are oriented parallel to the plate boundary, characterized by elongate forms, and deformed by transform faulting. Three guyot‐type seamounts display summit plateaux that were formed by wave and current erosion. MRC seafloor is composed of alkaline to sub‐alkaline basaltic pillow, massive and sheet lava flows, lava talus, volcaniclastic breccia, diabase and gabbro. This oceanic crust was formed during effusive mid‐ocean ridge volcanism at the relic Macquarie spreading centre and has since been sheared, accreted and exhumed along the modern transpressional plate boundary. Major element systematics indicate samples originated from spatially distinct magmatic sources and have since been juxtaposed at seamounts due to transpressional relative plate motion. MRC seamounts have formed as discrete elevations as a result of dip‐slip and strike‐slip faulting of the ridge axis. Thus, MRC seamounts are volcanic in origin but are now the morphological manifestations of tectonic and geomorphic processes. Petrologic and geochemical characteristics of volcanic glass samples from the MRC indicate that both effusive and explosive eruption styles operated at the relic Macquarie spreading centre. Primitive and sub‐alkaline to transitional basaltic magma that rose efficiently to the seafloor was erupted effusively and cooled to form lava flows with low vesicle and phenocryst contents or was granulated on contact with seawater to form hyaloclasts deposited in volcaniclastic breccias. More alkaline magmas that underwent crystal fractionation and volatile exsolution in shallow reservoirs were fragmented and erupted during submarine hawaiian‐type eruptions. Such a scenario is likely to have occurred during the final stages of magmatism at the Australia‐Pacific plate boundary south of New Zealand when seafloor spreading was ultraslow or had ceased, which induced low degrees of partial melting and retarded magma ascent rates. All MRC samples display enriched mid‐ocean ridge basalt (E‐MORB) trace element characteristics. The sample suite can be divided into two groups, with Group 1 samples distinguished from Group 2 samples by their lower concentrations of highly incompatible trace elements, flatter LREE slopes, higher MgO contents and lower alkali element contents. Group 1 basalts were derived from low degree partial melting of spinel lherzolite generated during the late stages of mid‐ocean ridge volcanism at the plate boundary when seafloor spreading rates were slow to ultraslow (full spreading rate < 20 mm yr⁻¹). Group 2 basalts were derived from low degree partial melting of spinel lherzolite, mixed with small amounts of very low degree partial melting of garnet lherzolite, during post‐spreading volcanism at the MRC. Remnant heat from previous seafloor spreading induced buoyant ascent of the sub‐ridge mantle and enriched heterogeneities were preferentially tapped by the ensuing low melt fractions. Magma ascent was stalled due to the cessation of extension at the ridge and the melts underwent crystal fractionation prior to eruption, which accounts for the lower MgO contents of Group 2 basalts. The pervasive incompatible element‐enrichment of MRC basalts and similarity to lavas from fossil spreading ridges in the eastern Pacific Ocean may reflect regional enrichment of the Pacific upper mantle.</p>


2012 ◽  
Vol 150 (3) ◽  
pp. 497-508 ◽  
Author(s):  
GEORGE S.-K. MA ◽  
JOHN MALPAS ◽  
JIAN-FENG GAO ◽  
KUO-LUNG WANG ◽  
LIANG QI ◽  
...  

AbstractEarly–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-like source. Such ultra-low PGE abundances, however, are possible if the source contains some mafic lithologies. Many of the basalts also exhibit suprachondritic Pd/Pt ratios of up to an order of magnitude higher than primitive mantle and chondrite, an increase too high to be attributable to fractionation of spinel and silicate minerals alone. The elevated Pd/Pt, associated with a decrease in Pt but not Ir and Ru, are also inconsistent with removal of Pt-bearing PGE minerals or alloys, which should have concurrently lowered Pt, Ir and Ru. In contrast, melting of a metasomatized source comprising sulphides whose Pt and to a lesser extent Rh were selectively mobilized through interaction with silicate melts, may provide an explanation.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 465 ◽  
Author(s):  
Kai Sun ◽  
Tao Wu ◽  
Xuesong Liu ◽  
Xue-Gang Chen ◽  
Chun-Feng Li

Mid-ocean ridge basalts (MORB) in the South China Sea (SCS) record deep crust-mantle processes during seafloor spreading. We conducted a petrological and geochemical study on the MORBs obtained from the southwest sub-basin of the SCS at site U1433 and U1434 of the International Ocean Discovery Program (IODP) Expedition 349. Results show that MORBs at IODP site U1433 and U1434 are unaffected by seawater alteration, and all U1433 and the bulk of U1434 rocks belong to the sub-alkaline low-potassium tholeiitic basalt series. Samples collected from site U1433 and U1434 are enriched mid-ocean ridge basalts (E-MORBs), and the U1434 basalts are more enriched in incompatible elements than the U1433 samples. The SCS MORBs have mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene during magma evolution. The magma of both sites might be mainly produced by the high-degree partial melting of spinel peridotite at low pressures. The degree of partial melting at site U1434 was lower than at U1433, ascribed to the relatively lower spreading rate. The magmatic source of the southwest sub-basin basalts may be contaminated by lower continental crust and contributed by recycled oceanic crust component during the opening of the SCS.


Zootaxa ◽  
2012 ◽  
Vol 3200 (1) ◽  
pp. 49 ◽  
Author(s):  
ANNE-NINA LÖRZ

Amphipod species of the families Epimeriidae and Iphimediidae are recorded for the first time from Macquarie Ridge, asparsely sampled mid-ocean ridge between New Zealand and Antarctica. Epimeria ashleyi sp. nov. collected from twoseamounts on the Macquarie Ridge between 676–1025 m water depth is described in detail.Epimeria ashleyi sp. nov. can be distinguished from similar species by the unique combination of following charac-ters: pointed coxa 1–3, dorsal doublecarinae as well as three lateral projections on epimeral plates 1–3. The juveniles ofthe new species are described and are considerably different from the adults. Additionally, Labriphimedia pulchridentata(Stebbing, 1888), previously known only from Heard Island, is recorded from Macquarie Ridge seamounts with first images of its colour in life.


2016 ◽  
Vol 4 (3) ◽  
pp. SP67-SP77 ◽  
Author(s):  
Yan Qiu ◽  
Yingmin Wang ◽  
Wenkai Huang ◽  
Weiguo Li ◽  
Haiteng Zhuo ◽  
...  

The South China Sea is one of the largest marginal seas in the Western Pacific region, and it has been widely accepted that the evolution of the basin and the development of its oceanic crusts is closely linked to seafloor spreading. A great controversy, however, is around whether or not there was a jump of mid-ocean ridges during seafloor spreading, particularly in the eastern South China Sea subbasin. A tectonostratigraphic interpretation using high-resolution seismic data demonstrated that: (1) a southward jump event of the mid-ocean ridge took place in the eastern subbasin during the seafloor spreading; (2) the orientation of the mid-ocean ridge had dramatically changed after the event resulting in that the abandoned mid-ocean ridge is along an east–west direction, whereas the younger one is generally east–northeast/west–southwest oriented; (3) the corresponding surface caused by the jump tectonic event and the pre-event sequence can be traced throughout the earlier formed oceanic crust; and (4) paleo-magnetic data showed that the event occurred at approximately 25–23.8 Ma. The results of this study could be used to better understand the evolution and filling of the South China Sea and other associated marginal basins.


2012 ◽  
Vol 295-298 ◽  
pp. 34-50 ◽  
Author(s):  
Chris E. Conway ◽  
Helen C. Bostock ◽  
Joel A. Baker ◽  
Richard J. Wysoczanski ◽  
Anne-Laure Verdier

Sign in / Sign up

Export Citation Format

Share Document