scholarly journals Mechanism-based design of bioactive cyclopropanated sugars

2021 ◽  
Author(s):  
◽  
Dylan Davies

<p>Carbohydrates are important feed stocks in synthesis of natural products and so attract the interest of many organic researchers throughout the world, most notably in the last 10 years. The work described within explores the manipulation of the glucose-derived glucal. The addition of a reactive substituted cyclopropane across the alkene has been employed synthetically for many years, the subsequent ring breaking/expansion has been identified in the lab as slow and needing the support of catalysts. We ask the question, “Will cyclopropanated carbohydrates undergo the slow ring breaking/expansion in the presence of proteins, and are we able to identify which of the two types of mechanisms the reaction is going through?” The cyclopropane will act as a warhead to bind to proteins through Ferrier like rearrangements, resulting in irreversible inhibition. To identify the potential of such compounds, a combination of techniques are used to identify potential pathways, protein targets and reactivity through structure activity relationships.  The key steps involved in finding out the potential of cyclopropanated carbohydrates are to determine biological activities through bio-assays, structure activity relationships, selective binding, chemical genetics and chemical proteomics. The bio-assays together with structure activity relationships provides evidence on which chemical mechanism is occurring when the biological target is interacting with the bioactive cyclopropanated carbohydrates. The most active compound, benzose (7), was subjected to chemical genetic analysis to determine the pathways and processes that are involved with the mode of action. The chemical genetic analysis was complimented by chemical proteomics to identify the direct biological target. Analogues of benzose were synthesised by the addition of azide groups to undergo a Huisgen Cyclisation within a cell lysate to facilitate binding to an alkyne-substituted matrix.</p>

2021 ◽  
Author(s):  
◽  
Dylan Davies

<p>Carbohydrates are important feed stocks in synthesis of natural products and so attract the interest of many organic researchers throughout the world, most notably in the last 10 years. The work described within explores the manipulation of the glucose-derived glucal. The addition of a reactive substituted cyclopropane across the alkene has been employed synthetically for many years, the subsequent ring breaking/expansion has been identified in the lab as slow and needing the support of catalysts. We ask the question, “Will cyclopropanated carbohydrates undergo the slow ring breaking/expansion in the presence of proteins, and are we able to identify which of the two types of mechanisms the reaction is going through?” The cyclopropane will act as a warhead to bind to proteins through Ferrier like rearrangements, resulting in irreversible inhibition. To identify the potential of such compounds, a combination of techniques are used to identify potential pathways, protein targets and reactivity through structure activity relationships.  The key steps involved in finding out the potential of cyclopropanated carbohydrates are to determine biological activities through bio-assays, structure activity relationships, selective binding, chemical genetics and chemical proteomics. The bio-assays together with structure activity relationships provides evidence on which chemical mechanism is occurring when the biological target is interacting with the bioactive cyclopropanated carbohydrates. The most active compound, benzose (7), was subjected to chemical genetic analysis to determine the pathways and processes that are involved with the mode of action. The chemical genetic analysis was complimented by chemical proteomics to identify the direct biological target. Analogues of benzose were synthesised by the addition of azide groups to undergo a Huisgen Cyclisation within a cell lysate to facilitate binding to an alkyne-substituted matrix.</p>


2014 ◽  
Vol 14 (12) ◽  
pp. 963-977 ◽  
Author(s):  
Andrea Milelli ◽  
Carmela Fimognari ◽  
Nicole Ticchi ◽  
Paolo Neviani ◽  
Anna Minarini ◽  
...  

2020 ◽  
Vol 44 (6) ◽  
pp. 2247-2255
Author(s):  
Qifan Zhou ◽  
Lina Jia ◽  
Fangyu Du ◽  
Xiaoyu Dong ◽  
Wanyu Sun ◽  
...  

A novel series of pyrrole-3-carboxamides targeting EZH2 have been designed and synthesized. The structure–activity relationships were summarized by combining with in vitro biological activity assay and docking results.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4358 ◽  
Author(s):  
Freddy A. Bernal ◽  
Thomas J. Schmidt

Parasitic infections like leishmaniasis and trypanosomiasis remain as a worldwide concern to public health. Improvement of the currently available drug discovery pipelines for those diseases is therefore mandatory. We have recently reported on the antileishmanial and antitrypanosomal activity of a set of cinnamate esters where we identified several compounds with interesting activity against L. donovani and T. brucei rhodesiense. For a better understanding of such compounds’ anti-infective activity, analyses of the underlying structure-activity relationships, especially from a quantitative point of view, would be a prerequisite for rational further development of such compounds. Thus, quantitative structure-activity relationships (QSAR) modeling for the mentioned set of compounds and their antileishmanial and antitrypanosomal activity was performed using a genetic algorithm as main variable selection tool and multiple linear regression as statistical analysis. Changes in the composition of the training/test sets were evaluated (two randomly selected and one by Kennard-Stone algorithm). The effect of the size of the models (number of descriptors) was also investigated. The quality of all resulting models was assessed by a variety of validation parameters. The models were ranked by newly introduced scoring functions accounting for the fulfillment of each of the validation criteria evaluated. The test sets were effectively within the applicability domain of the best models, which demonstrated high robustness. Detailed analysis of the molecular descriptors involved in those models revealed strong dependence of activity on the number and type of polar atoms, which affect the hydrophobic/hydrophilic properties causing a prominent influence on the investigated biological activities.


2018 ◽  
Vol 1 (T5) ◽  
pp. 110-115
Author(s):  
Tho Huu Le ◽  
Hai Xuan Nguyen ◽  
Mai Thi Thanh Nguyen

Epoxylignans are polyphenolic compounds, which possess various biological activities such as antiproliferative activity on cancer cells, antioxidant, antihyperglycemic,… In this research, we study on α- glucosidase inhibitory activity of 11 epoxylignans isolated from the stem of Artocarpus heterophyllus, the stem of Willughbeia cochinchinensis, the stem bark of Crateva religiosa, and the propolis of Trigona minor. The results showed that, compounds 1–4 and 7–10 were more potent inhibitory activity than that of positive control acarbose (IC50, 214.5 µM). Based on the results, their structure-activity relationships showed that the presence of the hydroxyl group at C-4, and C-4ʹ positions play an important role in increasing the activity. Furthermore, diepoxylignans having a ketone group at C-9′ exhibited stronger activity. In contrast, the opening of an epoxy ring at C-7 the C-9′ positions reduced the activity.


2018 ◽  
Vol 18 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Qing-Cheng Ren ◽  
Chuan Gao ◽  
Zhi Xu ◽  
Lian-Shun Feng ◽  
Ming-Liang Liu ◽  
...  

Bis-coumarins have caused great interests in the recent years. These compounds exhibit diverse biological activities which are ascribed to their ability to exert noncovalent interactions with the various active sites in organisms. Some of them such as dicoumarolum and dicoumarol were approved for therapeutic purposes in clinical practice. Encouraged by the above facts, numerous biscoumarin derivatives have been synthesized and screened for their biological activities, and many of them showed promising potency. This review is focused on the biological potential of bis-coumarin derivatives with particular mention of those exhibiting antibacterial, anticoagulant, antiinflammatory, antiviral, anti-parasite and antitumor activities, and their structure-activity relationships are also discussed.


Sign in / Sign up

Export Citation Format

Share Document