scholarly journals Multifunctional Textiles from New Zealand Wool Coloured with Silver or Silver Halide Nanoparticles

2021 ◽  
Author(s):  
◽  
Fern M. Kelly

<p>Significant opportunities exist for the development of innovative multifunctional textiles for high value market applications. Composites that combine the inherent properties of their all precursor components in a synergistic manner in particular are sought after. Thus the unique chemical and physical properties of silver or silver halide nanoparticles are combined with the traditional properties of wool, thereby producing an innovative multifunctional composite. The prepared wool - silver or - silver halide nanoparticle composites retain the elasticity, thermal insulation and softness of the wool, whilst the colour, conductivity and antimicrobial properties owing to the nanoparticles are also incorporated. Due to the multi functions of silver the resulting high quality, high value product has numerous applications within the fashion and interior furnishings industries. The wools employed for the preparation of wool - silver or - silver chloride nanoparticle composites are merino wool and crossbred wool. Merino wool provides the main focus of the research.  The experimental approach for the colouring of merino by silver or silver halide nanoparticles follows a novel and proprietary approach. The preparation of wool - silver nanoparticle composites includes two different procedures: 1) the synthesis of nanoparticles in the presence of wool fibres, using an external reducing agent/stabilising agent (trisodium citrate (TSC)), with the in situ binding of nanoparticles to the surface of the fibre; and 2) the synthesis of nanoparticles in the presence of the merino wool substrate, using the reducing nature of wool, with the in situ binding of nanoparticles within the fibre. Merino wool - silver nanoparticle composites range in colour from very pale yellow, through gold to tan and brown. The successful preparation of wool - silver halide nanoparticle composites includes the in situ precipitation of nanoparticles within the wool fibre. This is accomplished by doping the wool, with one of the halides, Cl⁻, Br⁻ or I⁻, prior to treatment with a silver containing solution. The colour of merino wool - silver halide nanoparticle composites can be tuned from pink to peach to purple.  The colour of the wool - silver or - silver halide nanoparticle composites is due to surface plasmon resonances, i.e. the interaction of electromagnetic radiation of visible light with the nanoparticles. The reflected colour is dependent upon the size and shape of the nanoparticle, in addition to the refractive index of the stabilising agent surround the particle. The refractive index of silver chloride or silver bromide differs to that of the reducing/stabilising agent implemented, TSC, or merino, and thus the reflected colour is altered. The colour of silver iodide nanoparticles appears to be due to the interaction of light with the formed nanoparticles themselves and not due to the formation of silver nanoparticles within the silver iodide nanoparticles. In addition to the colour being measured by UV-vis in reflectance mode, the characterisation of the hues of the prepared composites were monitored by obtaining CIE L*, a*, b* values via the HunterLab Colourquest.  The morphological characterisation of merino wool coloured by silver or silver chloride nanoparticles was undertaken using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When merino wool - silver nanoparticle composites are prepared using an external reducing agent, the formed nanoparticles predominantly bind to the wool fibres surfaces only. When the reducing nature of wool is used for composite preparation, nanoparticles are formed within the fibre and are dispersed throughout the fibres core, with few being present on the surface. Comparable studies of merino wool - silver halide nanoparticle composites showed that silver halide nanoparticles are formed and stabilised just below the fibres surface. The confirmation of silver or silver halide species within the prepared composites was undertaken using energy dispersive spectroscopy (EDS), scanning transmission spectroscopy (STEM), x-ray diffraction (XRD) and x-ray absorption near edge spectroscopy (XANES).  Colourfastness tests to washing, rubbing and exposure to chlorinated swimming pool water were undertaken to assess the robustness of the prepared composites in terms of their colour. These tests indicate that the colours of both merino wool - silver and - silver chloride nanoparticle composites are very stable. The leaching of silver during the washing process was noted to be insignificant, suggesting a strong and stable bond between the fibre substrate and the nanoparticles. X-ray photoelectron spectroscopy (XPS) was used to elucidate the chemical bonding between the wool fibre substrate and the silver or silver halide nanoparticles.  The colourfastness of merino wool - silver or - silver halide nanoparticle composites to light however, was not observed. When exposed to UV light for extended periods, a distinct change in colour occurs. Silver nanoparticle composites lighten considerably, whereas their silver chloride nanoparticle counterparts are noted to become grey in their colour. XPS was used in an attempt to determine what leads to the discolouration of the composites. Further research is required however, in order to reduce or halt the colour degradation of merino wool - silver or - silver chloride nanoparticle composites. Silver iodide nanoparticles, on the other hand, show great potential as colourants for wool, exhibiting stable colours over a long time period to light.  A range of desirable colours are obtained through the colouring of wool by silver or silver halide nanoparticles. These nanoparticles are strongly bound to the fibres and thus the colours are stable to washing and rubbing, exhibiting insignificant leaching of silver during such processes. Additionally, the prepared silver and silver halide nanoparticle composites tested positive for their antistatic properties, and their antimicrobial activity, providing a high value multifunctional material. Numerous applications within fashion and interior furnishing industries are therefore apparent. However, the evident setback for applications in these fields is the colour instability to light of silver, silver chloride and silver bromide nanoparticles, and thus further studies are required to eliminate this problem. Alternative options exist for the exploitation of the photosensitivity of silver halide nanoparticles within the merino wool composites, or the possibility of using silver or silver halide nanoparticles in combination with other strong dyes for the production of coloured woollen fabrics.</p>

2021 ◽  
Author(s):  
◽  
Fern M. Kelly

<p>Significant opportunities exist for the development of innovative multifunctional textiles for high value market applications. Composites that combine the inherent properties of their all precursor components in a synergistic manner in particular are sought after. Thus the unique chemical and physical properties of silver or silver halide nanoparticles are combined with the traditional properties of wool, thereby producing an innovative multifunctional composite. The prepared wool - silver or - silver halide nanoparticle composites retain the elasticity, thermal insulation and softness of the wool, whilst the colour, conductivity and antimicrobial properties owing to the nanoparticles are also incorporated. Due to the multi functions of silver the resulting high quality, high value product has numerous applications within the fashion and interior furnishings industries. The wools employed for the preparation of wool - silver or - silver chloride nanoparticle composites are merino wool and crossbred wool. Merino wool provides the main focus of the research.  The experimental approach for the colouring of merino by silver or silver halide nanoparticles follows a novel and proprietary approach. The preparation of wool - silver nanoparticle composites includes two different procedures: 1) the synthesis of nanoparticles in the presence of wool fibres, using an external reducing agent/stabilising agent (trisodium citrate (TSC)), with the in situ binding of nanoparticles to the surface of the fibre; and 2) the synthesis of nanoparticles in the presence of the merino wool substrate, using the reducing nature of wool, with the in situ binding of nanoparticles within the fibre. Merino wool - silver nanoparticle composites range in colour from very pale yellow, through gold to tan and brown. The successful preparation of wool - silver halide nanoparticle composites includes the in situ precipitation of nanoparticles within the wool fibre. This is accomplished by doping the wool, with one of the halides, Cl⁻, Br⁻ or I⁻, prior to treatment with a silver containing solution. The colour of merino wool - silver halide nanoparticle composites can be tuned from pink to peach to purple.  The colour of the wool - silver or - silver halide nanoparticle composites is due to surface plasmon resonances, i.e. the interaction of electromagnetic radiation of visible light with the nanoparticles. The reflected colour is dependent upon the size and shape of the nanoparticle, in addition to the refractive index of the stabilising agent surround the particle. The refractive index of silver chloride or silver bromide differs to that of the reducing/stabilising agent implemented, TSC, or merino, and thus the reflected colour is altered. The colour of silver iodide nanoparticles appears to be due to the interaction of light with the formed nanoparticles themselves and not due to the formation of silver nanoparticles within the silver iodide nanoparticles. In addition to the colour being measured by UV-vis in reflectance mode, the characterisation of the hues of the prepared composites were monitored by obtaining CIE L*, a*, b* values via the HunterLab Colourquest.  The morphological characterisation of merino wool coloured by silver or silver chloride nanoparticles was undertaken using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When merino wool - silver nanoparticle composites are prepared using an external reducing agent, the formed nanoparticles predominantly bind to the wool fibres surfaces only. When the reducing nature of wool is used for composite preparation, nanoparticles are formed within the fibre and are dispersed throughout the fibres core, with few being present on the surface. Comparable studies of merino wool - silver halide nanoparticle composites showed that silver halide nanoparticles are formed and stabilised just below the fibres surface. The confirmation of silver or silver halide species within the prepared composites was undertaken using energy dispersive spectroscopy (EDS), scanning transmission spectroscopy (STEM), x-ray diffraction (XRD) and x-ray absorption near edge spectroscopy (XANES).  Colourfastness tests to washing, rubbing and exposure to chlorinated swimming pool water were undertaken to assess the robustness of the prepared composites in terms of their colour. These tests indicate that the colours of both merino wool - silver and - silver chloride nanoparticle composites are very stable. The leaching of silver during the washing process was noted to be insignificant, suggesting a strong and stable bond between the fibre substrate and the nanoparticles. X-ray photoelectron spectroscopy (XPS) was used to elucidate the chemical bonding between the wool fibre substrate and the silver or silver halide nanoparticles.  The colourfastness of merino wool - silver or - silver halide nanoparticle composites to light however, was not observed. When exposed to UV light for extended periods, a distinct change in colour occurs. Silver nanoparticle composites lighten considerably, whereas their silver chloride nanoparticle counterparts are noted to become grey in their colour. XPS was used in an attempt to determine what leads to the discolouration of the composites. Further research is required however, in order to reduce or halt the colour degradation of merino wool - silver or - silver chloride nanoparticle composites. Silver iodide nanoparticles, on the other hand, show great potential as colourants for wool, exhibiting stable colours over a long time period to light.  A range of desirable colours are obtained through the colouring of wool by silver or silver halide nanoparticles. These nanoparticles are strongly bound to the fibres and thus the colours are stable to washing and rubbing, exhibiting insignificant leaching of silver during such processes. Additionally, the prepared silver and silver halide nanoparticle composites tested positive for their antistatic properties, and their antimicrobial activity, providing a high value multifunctional material. Numerous applications within fashion and interior furnishing industries are therefore apparent. However, the evident setback for applications in these fields is the colour instability to light of silver, silver chloride and silver bromide nanoparticles, and thus further studies are required to eliminate this problem. Alternative options exist for the exploitation of the photosensitivity of silver halide nanoparticles within the merino wool composites, or the possibility of using silver or silver halide nanoparticles in combination with other strong dyes for the production of coloured woollen fabrics.</p>


2021 ◽  
Author(s):  
◽  
Ishira Samarasinghe

<p>This research programme is concerned with the uptake studies of Cu2+, Zn2+ and Mn2+ at different conditions, by merino wool fibres and also uptake studies of Cu2+ ions by chemically modified wool fibres. Cu2O particles and Cu complexes are formed within merino wool by an in situ reaction with sodium borohydride and thioglycoloic acid respectively. The d-block elements have the ability to bind chemically to certain functional groups present within the keratin protein of wool. The absorption of the Cu2+, Mn2+ and Zn2+ from solution by wool fibres under different conditions notably, time, temperature and initial concentration have been studied. The optimum temperature and reaction time to give highest absorption of the Cu2+ by the wool fibre was found to be 90 oC and one hour without modifying the nature of the wool, from a solution of Cu2+ concentration of 450 mg L-1. Cu2+ was found to give the greatest absorption by the wool fibres, whereas Zn2+ and Mn2+ were found to be absorbed the least. The absorption of Cu2+ ions increases with increasing temperature. At the higher temperature of 90 oC, the -S-S- bonds in the cystine amino acids break more readily, generating thiol and cysteic acid groups to bind with copper ions. The uptake of Cu2+ by ethylenediaminetetraacetic dianhydride (14 mg g-1 of wool) or thioglycolic acid (42.5 mg g-1 of wool) or sodium borohydride (41.8 mg g-1 of wool) treated merino wool fibres increases with respect to unmodified wool (8 mg g-1 of wool). NaBH4 treated merino wool reduces Cu2+ ions to Cu2O particles which form within the wool fibres by an in situ reaction. TGA treated merino wool provides additional functional groups to bind with copper ions and Cu2O particles also likely to be formed within TGA treated wool composites. The metal ions were absorbed into the fibres under various conditions and the extent of absorption was quantified. The form and binding of the Cu2O particles or Cu2+ ions onto the wool fibres are studied using UV-Visible, FTIR, XRD, SEM, EDS and TEM methods.</p>


2014 ◽  
Vol 118 (13) ◽  
pp. 7195-7201 ◽  
Author(s):  
Peter Siffalovic ◽  
Karol Vegso ◽  
Monika Benkovicova ◽  
Matej Jergel ◽  
Andrej Vojtko ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (24) ◽  
pp. 11485-11490 ◽  
Author(s):  
Claudia Kästner ◽  
Patrick E. J. Saloga ◽  
Andreas F. Thünemann

We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments.


PhysChemComm ◽  
2002 ◽  
Vol 5 (19) ◽  
pp. 135 ◽  
Author(s):  
G. R. Robb ◽  
A. Harrison ◽  
A. G. Whittaker

2014 ◽  
Vol 631 ◽  
pp. 384-389 ◽  
Author(s):  
Daina Kalnina ◽  
Karlis Agris Gross ◽  
Pavels Onufrijevs ◽  
Edvins Dauksta ◽  
Vizma Nikolajeva ◽  
...  

Silver halides represent a yet unexplored avenue for imparting antimicrobial activity in calcium phosphates. Silver halide colloids were added to calcium phosphate. Concurrent melting of silver halides and crystallization of carbonated apatite was achieved by heating to increase the silver halide surface area available to bacteria.Pseudomonas aeruginosa were more sensitive to silver iodide and silver bromide than Staphylococcus aureus. Silver iodide demonstrated greater activity than silver bromide. Silver chloride did not produce an antibacterial response. Both amorphous calcium phosphate and carbonated apatite displayed similar antibacterial activity when accompanied by silver halides. It is thought that amorphous calcium phosphate dissolves more readily and increases the bioavailability of the silver halide particles. Silver iodide displays a greater antibacterial response of all silver halides, with a response that is improved in a more resorbable matrix.


2021 ◽  
Author(s):  
◽  
Ishira Samarasinghe

<p>This research programme is concerned with the uptake studies of Cu2+, Zn2+ and Mn2+ at different conditions, by merino wool fibres and also uptake studies of Cu2+ ions by chemically modified wool fibres. Cu2O particles and Cu complexes are formed within merino wool by an in situ reaction with sodium borohydride and thioglycoloic acid respectively. The d-block elements have the ability to bind chemically to certain functional groups present within the keratin protein of wool. The absorption of the Cu2+, Mn2+ and Zn2+ from solution by wool fibres under different conditions notably, time, temperature and initial concentration have been studied. The optimum temperature and reaction time to give highest absorption of the Cu2+ by the wool fibre was found to be 90 oC and one hour without modifying the nature of the wool, from a solution of Cu2+ concentration of 450 mg L-1. Cu2+ was found to give the greatest absorption by the wool fibres, whereas Zn2+ and Mn2+ were found to be absorbed the least. The absorption of Cu2+ ions increases with increasing temperature. At the higher temperature of 90 oC, the -S-S- bonds in the cystine amino acids break more readily, generating thiol and cysteic acid groups to bind with copper ions. The uptake of Cu2+ by ethylenediaminetetraacetic dianhydride (14 mg g-1 of wool) or thioglycolic acid (42.5 mg g-1 of wool) or sodium borohydride (41.8 mg g-1 of wool) treated merino wool fibres increases with respect to unmodified wool (8 mg g-1 of wool). NaBH4 treated merino wool reduces Cu2+ ions to Cu2O particles which form within the wool fibres by an in situ reaction. TGA treated merino wool provides additional functional groups to bind with copper ions and Cu2O particles also likely to be formed within TGA treated wool composites. The metal ions were absorbed into the fibres under various conditions and the extent of absorption was quantified. The form and binding of the Cu2O particles or Cu2+ ions onto the wool fibres are studied using UV-Visible, FTIR, XRD, SEM, EDS and TEM methods.</p>


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
C. Goessens ◽  
D. Schryvers ◽  
J. Van Landuyt ◽  
A. Verbeeck ◽  
R. De Keyzer

Silver halide grains (AgX, X=Cl,Br,I) are commonly recognized as important entities in photographic applications. Depending on the preparation specifications one can grow cubic, octahedral, tabular a.o. morphologies, each with its own physical and chemical characteristics. In the present study crystallographic defects introduced by the mixing of 5-20% iodide in a growing AgBr tabular grain are investigated. X-ray diffractometry reveals the existence of a homogeneous Ag(Br1-xIx) region, expected to be formed around the AgBr kernel. In fig. 1 a two-beam BF image, taken at T≈100 K to diminish radiation damage, of a triangular tabular grain is presented, clearly showing defect contrast fringes along four of the six directions; the remaining two sides show similar contrast under relevant diffraction conditions. The width of the central defect free region corresponds with the pure AgBr kernel grown before the mixing with I. The thickness of a given grain lies between 0.15 and 0.3 μm: as indicated in fig. 2 triangular (resp. hexagonal) grains exhibit an uneven (resp. even) number of twin interfaces (i.e., between + and - twin variants) parallel with the (111) surfaces. The thickness of the grains and the existence of the twin variants was confirmed from CTEM images of perpendicular cuts.


1997 ◽  
Vol 7 (C2) ◽  
pp. C2-619-C2-620 ◽  
Author(s):  
M. Giorgett ◽  
I. Ascone ◽  
M. Berrettoni ◽  
S. Zamponi ◽  
R. Marassi

Sign in / Sign up

Export Citation Format

Share Document