scholarly journals Effect of Series Active Voltage Conditioners on Modernized Grid

2021 ◽  
Author(s):  
◽  
Mostafa Ahmed Nazih Ahmed

<p>Modernized “Smart” grids incorporate renewable energy sources on a widespread scale. Foreseen expansion in integrating more renewables is driven by global CO₂ emission concerns and depletion of fossil fuels. Active elements/devices are added to smart grids to enhance power availability and quality with the aid of advances in power electronics and communication systems. Active Voltage Conditioner (AVC) represents state-of-the-art in the field of voltage regulation and conditioning, however; integrating it into modernized grids has not been the subject of detailed study yet.  This thesis details the AVC-Grid interaction mechanism and associated performance parameters. ABB PCS100 AVC computer model based on MATLAB/PLECS platform is used as a basis for the proposed mathematical model. Accordingly, operational V-I characteristics is derived and impact of equivalent grid stiffness is analyzed.  In this thesis, the modeling of AVC has been introduced as seen by the grid in light of MATLAB/PLECS simulations. The conditioning ratio to describe the “depth” of load conditioning had been introduced. Modeling of AVC operational characteristics has been developed and dependency on conditioning ratio and equivalent grid stiffness had been investigated. Also, the analysis of grid behavior due to AVC operation during overvoltages and undervoltages has been carried out as well as discussing the envisaged impact on tied WTG/PV systems.  The thesis represents an initial attempt to model the AVC and discusses its envisaged impact on smart grids.</p>

2021 ◽  
Author(s):  
◽  
Mostafa Ahmed Nazih Ahmed

<p>Modernized “Smart” grids incorporate renewable energy sources on a widespread scale. Foreseen expansion in integrating more renewables is driven by global CO₂ emission concerns and depletion of fossil fuels. Active elements/devices are added to smart grids to enhance power availability and quality with the aid of advances in power electronics and communication systems. Active Voltage Conditioner (AVC) represents state-of-the-art in the field of voltage regulation and conditioning, however; integrating it into modernized grids has not been the subject of detailed study yet.  This thesis details the AVC-Grid interaction mechanism and associated performance parameters. ABB PCS100 AVC computer model based on MATLAB/PLECS platform is used as a basis for the proposed mathematical model. Accordingly, operational V-I characteristics is derived and impact of equivalent grid stiffness is analyzed.  In this thesis, the modeling of AVC has been introduced as seen by the grid in light of MATLAB/PLECS simulations. The conditioning ratio to describe the “depth” of load conditioning had been introduced. Modeling of AVC operational characteristics has been developed and dependency on conditioning ratio and equivalent grid stiffness had been investigated. Also, the analysis of grid behavior due to AVC operation during overvoltages and undervoltages has been carried out as well as discussing the envisaged impact on tied WTG/PV systems.  The thesis represents an initial attempt to model the AVC and discusses its envisaged impact on smart grids.</p>


Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


2018 ◽  
Vol 27 (05) ◽  
pp. 1830002 ◽  
Author(s):  
C. Subramani ◽  
K. R. Ramanand

The current energy scenario in the world considering the overconsumption of fossil fuels as well as its disastrous impact on environment calls for the promotion of renewable resources to take part in the growth towards sustainable development. With the penetration of such intermittent renewable energy sources into the existing grid, it not only enhanced the capability of the grid but also posed challenges regarding system stability. A practical solution to these problems by means of a new technological concept called “electric springs” is presented in this paper which enhances the system stability and provides voltage regulation for the same. Reviewing the various analyses, control methodologies as well as applications regarding the electric spring provides the confidence to further analyze its scope in large-scale power distribution system.


2020 ◽  
Vol 45 (1/2) ◽  
pp. 195-207
Author(s):  
Aleksandra Krstić – Furundžić ◽  
Alessandra Scognamiglio ◽  
Mirjana Devetakovic ◽  
Francesco Frontini ◽  
Budimir Sudimac

Purpose The purpose of this paper is to present a critical review of the key trends in the integration of photovoltaic (PV) facilities into the built environment in cities. This is regarded as part of a series of measures towards wider use of renewable energy sources. Design/methodology/approach The problem has been approached from the point that cities are consumers of large amounts of energy. They require uninterrupted energy supply but with dynamic power profile. Mainly consumption of energy generated from fossil fuels is present nowadays with significant pollution of the environment as a consequence. The sustainable energy transition in cities means increasing the supply of energy from renewable sources. Findings The paper points to the integration of PV renewable systems in the built environment, opportunities and constraints, design conditions and tools. The consideration of the constraints which creates urban environment is carried out to understand the complexity of selecting locations in the cities. The paper gives an overview of the possibilities of PV systems integration in the built environment and discusses physical limitations in the urban environment and simulation tools as well as challenges and research and development issues. Research limitations/implications The paper offers a critical review of the PV applications which have been illustrated with examples from developed countries. However, examples from developing markets have not been considered. Future work would address this limitation and enable the discussion from a comparative perspective. Social implications The study gives a comprehensive overview of PV integrations in contemporary cities, stimulating architects’ practitioners to acquire the PV technology and aesthetics, and to apply it in future developments. Originality/value Observing the use of PV applications from the perspective of architects and designers the discussion and examples covered in this paper offers an original review, which provides the base future in-depth studies on PV applications in various contexts.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1306
Author(s):  
Pedro Roncero-Sánchez ◽  
Alfonso Parreño Torres ◽  
Javier Vázquez ◽  
Francisco Javier López-Alcolea ◽  
Emilio J. Molina-Martínez ◽  
...  

High-Voltage Direct Current (HVDC) systems are a feasible solution that allows the transmission of energy between several power networks. As a consequence of the use of HVDC systems, renewable energy sources can be integrated more easily into distribution grids and smart grids. Furthermore, HVDC systems can contribute to improving the power quality (PQ) of the grids to which they are connected. This paper presents a multiterminal HVDC system that not only controls the flows of active power between four different networks, but also compensates imbalances and harmonics in the grid currents to maintain balanced and sinusoidal voltages at the point of common coupling of the various grids. The compensation is carried out by the voltage-source converters (VSCs) connected to their respective AC grids. A control scheme based on the use of resonant regulators and proportional–integral (PI) controllers is responsible for of achieving the necessary power flow control with the amelioration of the PQ. A case study of a multiterminal HVDC system that comprises four terminals sharing a DC bus of 80 kV is simulated by means of PSCADTM/EMTDCTM (Power System Computer-Aided Design; Electromagnetic Transients including Direct Current), where the AC grids associated with the terminals suffer from voltage imbalances and voltage harmonics owing to the connection of unbalanced loads and nonlinear loads. The obtained simulation results show the performance of the complete system in terms of active power flow, voltage regulation, and harmonic distortions of the grid current and the grid voltage.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4392 ◽  
Author(s):  
Manzoor Ellahi ◽  
Ghulam Abbas ◽  
Irfan Khan ◽  
Paul Mario Koola ◽  
Mashood Nasir ◽  
...  

Renewable energy sources (RESs) are the replacement of fast depleting, environment polluting, costly, and unsustainable fossil fuels. RESs themselves have various issues such as variable supply towards the load during different periods, and mostly they are available at distant locations from load centers. This paper inspects forecasting techniques, employed to predict the RESs availability during different periods and considers the dispatch mechanisms for the supply, extracted from these resources. Firstly, we analyze the application of stochastic distributions especially the Weibull distribution (WD), for forecasting both wind and PV power potential, with and without incorporating neural networks (NN). Secondly, a review of the optimal economic dispatch (OED) of RES using particle swarm optimization (PSO) is presented. The reviewed techniques will be of great significance for system operators that require to gauge and pre-plan flexibility competence for their power systems to ensure practical and economical operation under high penetration of RESs.


2017 ◽  
pp. 1625-1679
Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


2014 ◽  
Vol 15 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Antonio Bracale ◽  
Guido Carpinelli ◽  
Annarita Di Fazio ◽  
Shahab Khormali

Abstract Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems’ losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Sign in / Sign up

Export Citation Format

Share Document