Characterising Gas Hydrate Deposits on New Zealand's Southern Hikurangi Margin using Seismic Reflection Data

2021 ◽  
Author(s):  
◽  
Hanyan Wang

<p>Reprocessed Bruin 2D seismic data (recorded in 2006) from New Zealand Hikurangi Margin are presented and analyzed to show the presence of gas hydrates. We choose six seismic lines that each showed bottom-simulating reflections (BSRs) that are important indicators for the presence of gas hydrate. The aim is to obtain a higher resolution image of the shallow subsurface structures and determine the nature of the gas hydrate system in this area.  To further investigate the presence of Gas Hydrates was undertaken. There is a strong correlation between anomalous velocities and the depths of BSRs, which supports the presence of gas hydrates in the research area and is useful for detecting areas of both free gas and gas hydrate along the seismic lines.  The combination of high-resolution seismic imaging and velocity analysis is the key method for showing the distribution of gas hydrates and gas pockets in our research area. The results indicate that the distribution of both free gas and gas hydrate is strongly localized. The Discussion Chapter gives several concentrated gas hydrate deposits in the research area. Idealized scenarios for the formation of the gas hydrates are proposed. In terms of identifying concentrated gas hydrate deposits we propose the identification of the following key seismic attributes: 1) existence of BSRs, 2) strong reflections above BSRs in the gas hydrate stability zone, 3) enhanced reflections related to free gas below BSRs, 4) appropriate velocity anomalies (i.e. low velocity zones beneath BSRs and localized high-velocity zones above BSRs).  This study contributes to the understanding of the geological conditions and processes that drives the deposition of concentrated gas hydrate deposits on this part of the Hikurangi Margin.</p>

2021 ◽  
Author(s):  
◽  
Hanyan Wang

<p>Reprocessed Bruin 2D seismic data (recorded in 2006) from New Zealand Hikurangi Margin are presented and analyzed to show the presence of gas hydrates. We choose six seismic lines that each showed bottom-simulating reflections (BSRs) that are important indicators for the presence of gas hydrate. The aim is to obtain a higher resolution image of the shallow subsurface structures and determine the nature of the gas hydrate system in this area.  To further investigate the presence of Gas Hydrates was undertaken. There is a strong correlation between anomalous velocities and the depths of BSRs, which supports the presence of gas hydrates in the research area and is useful for detecting areas of both free gas and gas hydrate along the seismic lines.  The combination of high-resolution seismic imaging and velocity analysis is the key method for showing the distribution of gas hydrates and gas pockets in our research area. The results indicate that the distribution of both free gas and gas hydrate is strongly localized. The Discussion Chapter gives several concentrated gas hydrate deposits in the research area. Idealized scenarios for the formation of the gas hydrates are proposed. In terms of identifying concentrated gas hydrate deposits we propose the identification of the following key seismic attributes: 1) existence of BSRs, 2) strong reflections above BSRs in the gas hydrate stability zone, 3) enhanced reflections related to free gas below BSRs, 4) appropriate velocity anomalies (i.e. low velocity zones beneath BSRs and localized high-velocity zones above BSRs).  This study contributes to the understanding of the geological conditions and processes that drives the deposition of concentrated gas hydrate deposits on this part of the Hikurangi Margin.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 450
Author(s):  
Roberto Clairmont ◽  
Heather Bedle ◽  
Kurt Marfurt ◽  
Yichuan Wang

Identifying gas hydrates in the oceanic subsurface using seismic reflection data supported by the presence of a bottom simulating reflector (BSR) is not an easy task, given the wide range of geophysical methods that have been applied to do so. Though the presence of the BSR is attributed to the attenuation response, as seismic waves transition from hydrate-filled sediment within the gas hydrate stability zone (GHSZ) to free gas-bearing sediment below, few studies have applied a direct attenuation measurement. To improve the detection of gas hydrates and associated features, including the BSR and free gas accumulation beneath the gas hydrates, we apply a recently developed method known as Sparse-Spike Decomposition (SSD) that directly measures attenuation from estimating the quality factor (Q) parameter. In addition to performing attribute analyses using frequency attributes and a spectral decomposition method to improve BSR imaging, using a comprehensive analysis of the three methods, we make several key observations. These include the following: (1) low-frequency shadow zones seem to correlate with large values of attenuation; (2) there is a strong relationship between the amplitude strength of the BSR and the increase of the attenuation response; (3) the resulting interpretation of migration pathways of the free gas using the direct attenuation measurement method; and (4) for the data analyzed, the gas hydrates themselves do not give rise to either impedance or attenuation anomalies that fully differentiate them from nearby non-hydrate zones. From this last observation, we find that, although the SSD method may not directly detect in situ gas hydrates, the same gas hydrates often form an effective seal trapping and deeper free gas accumulation, which can exhibit a large attenuation response, allowing us to infer the likely presence of the overlying hydrates themselves.


Geophysics ◽  
1974 ◽  
Vol 39 (4) ◽  
pp. 427-440 ◽  
Author(s):  
Max K. Miller

Common‐depth‐point seismic reflection data were generated on a computer using simple ray tracing and analyzed with processing techniques currently used on actual field recordings. Constant velocity layers with curved interfaces were used to simulate complex geologic shapes. Two models were chosen to illustrate problems caused by curved geologic interfaces, i.e., interfaces at depths which vary laterally in a nonlinear fashion and produce large spatial variations in the apparent stacking velocity. A three‐layer model with a deep structure and no weathering was used as a control model. For comparison, a low velocity weathering layer also of variable thickness was inserted near the surface of the control model. The low velocity layer was thicker than the ordinary thin weathering layers where state‐of‐the‐art static correction methods work well. Traveltime, moveout, apparent rms velocities, and interval velocities were calculated for both models. The weathering introduces errors into the rms velocities and traveltimes. A method is described to compensate for these errors. A static correction applied to the traveltimes reduced the fluctuation of apparent rms velocities. Values for the thick weathering layer model were “over corrected” so that synclines (anticlines) replaced false anticlines (synclines) for both near‐surface and deep zones. It is concluded that computer modeling is a useful tool for analyzing specific problems of processing CDP seismic data such as errors in velocity estimates produced by large lateral variations in overburden.


2021 ◽  
pp. 1-29
Author(s):  
Papia Nandi ◽  
Patrick Fulton ◽  
James Dale

As rising ocean temperatures can destabilize gas hydrate, identifying and characterizing large shallow hydrate bodies is increasingly important in order to understand their hazard potential. In the southwestern Gulf of Mexico, reanalysis of 3D seismic reflection data reveals evidence for the presence of six potentially large gas hydrate bodies located at shallow depths below the seafloor. We originally interpreted these bodies as salt, as they share common visual characteristics on seismic data with shallow allochthonous salt bodies, including high-impedance boundaries and homogenous interiors with very little acoustic reflectivity. However, when seismic images are constructed using acoustic velocities associated with salt, the resulting images were of poor quality containing excessive moveout in common reflection point (CRP) offset image gathers. Further investigation reveals that using lower-valued acoustic velocities results in higher quality images with little or no moveout. We believe that these lower acoustic values are representative of gas hydrate and not of salt. Directly underneath these bodies lies a zone of poor reflectivity, which is both typical and expected under hydrate. Observations of gas in a nearby well, other indicators of hydrate in the vicinity, and regional geologic context, all support the interpretation that these large bodies are composed of hydrate. The total equivalent volume of gas within these bodies is estimated to potentially be as large as 1.5 gigatons or 10.5 TCF, considering uncertainty for estimates of porosity and saturation, comparable to the entire proven natural gas reserves of Trinidad and Tobago in 2019.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. B247-B258 ◽  
Author(s):  
Bo Yang ◽  
Xiangyun Hu ◽  
Wule Lin ◽  
Shuang Liu ◽  
Hui Fang

In China, gas hydrates in onshore permafrost areas have so far only been found in the Juhugeng Mine of the Qilian Mountains. However, their subsurface distribution remains unclear. Electrical resistivity logs have revealed that zones containing gas hydrates have higher resistivity than surrounding zones, which makes electromagnetic methods viable for detecting gas-hydrate deposits. We have deployed a natural-source audio-magnetotelluric (AMT) survey at the Juhugeng Mine. AMT data were collected at 176 sites along five profiles, and resistivity models were derived from 2D inversions after detailed data analysis. After the available geologic and geophysical observations were combined, the inversion results from profile 1 suggested that permafrost near the surface with high resistivity and thickness is essential for underlying gas hydrates to be present. The decrease in resistivity and/or thickness of permafrost due to climate change may lead to gas-hydrate dissociation. The other four AMT transects suggested three prospective gas-hydrate sites. Our results indicate that the AMT survey technique is suitable for exploring gas hydrates in permafrost areas and analyzing the impact of permafrost characteristics on gas-hydrate occurrence.


2017 ◽  
Vol 90 (2) ◽  
pp. 187-195
Author(s):  
A. I. Opara ◽  
C. C. Agoha ◽  
C. N. Okereke ◽  
U. P. Adiela ◽  
C. N. Onwubuariri ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. SH1-SH9
Author(s):  
Steven D. Sloan ◽  
J. Tyler Schwenk ◽  
Robert H. Stevens

Variability of material properties in the shallow subsurface presents challenges for near-surface geophysical methods and exploration-scale applications. As the depth of investigation decreases, denser sampling is required, especially of the near offsets, to accurately characterize the shallow subsurface. We have developed a field data example using high-resolution shallow seismic reflection data to demonstrate how quickly near-surface properties can change over short distances and the effects on field data and processed sections. The addition of a relatively thin, 20 cm thick, low-velocity layer can lead to masked reflections and an inability to map shallow reflectors. Short receiver intervals, on the order of 10 cm, were necessary to identify the cause of the diminished data quality and would have gone unknown using larger, more conventional station spacing. Combined analysis of first arrivals, surface waves, and reflections aided in determining the effects and extent of a low-velocity layer that inhibited the identification and constructive stacking of the reflection from a shallow water table using normal-moveout-based processing methods. Our results also highlight the benefits of using unprocessed gathers to pragmatically guide processing and interpretation of seismic data.


2021 ◽  
Vol 230 ◽  
pp. 01007
Author(s):  
Ivan Vargas-Cordero de la Cruz ◽  
Michela Giustiniani ◽  
Umberta Tinivella ◽  
Giulia Alessandrini

In last decades, the Chilean margin has been extensively investigated to better characterize the complex geological setting through the acquisition of geophysical data and, in particular, seismic lines. The analysis of seismic lines allowed identifying the occurrence of gas hydrates and free gas in many places along the margin. Clearly, the gas hydrate reservoir could be a strategic energy reserve for Chile, but, on the other hand, the dissociated of gas hydrate due to climate change could be an issue to face. Moreover, this region is characterized by large and mega-scale earthquakes that may contribute to gas hydrate dissociation and consequent submarine slides triggering. In this context, Chilean margin should be considered a natural laboratory to study the hydrate system evolution.


Sign in / Sign up

Export Citation Format

Share Document