scholarly journals Fracture system characterisation and implications for fluid flow in volcanic and metamorphic rocks

2021 ◽  
Author(s):  
◽  
Cécile Massiot

<p>Fluid flow pathways in volcanic and metamorphic rocks are dominantly controlled by fracture systems. Although these fracture systems are critical for developing reservoirs in an economical and sustainable way, and for understanding processes that cause earthquakes, they are often poorly constrained. This thesis studies the geometry of fracture systems, the factors influencing their geometries, and their possible impacts on permeability in three contrasting settings: an outcropping andesite lava flow of the Ruapehu volcano; the andesite-hosted Rotokawa geothermal reservoir; and the Alpine Fault hangingwall metamorphosed schists. We use datasets from a combination of cores, acoustic borehole televiewer (BHTV) logs, outcrop scanlines, and terrestrial laser scanner (TLS) point clouds, which span multiple scales of observation.  Fracture geometries are studied in a young (~6 ka-old) blocky andesitic lava flow on the Ruapehu volcano, as a representative example of weakly-altered andesitic lava flows emplaced over gentle topography in the absence of glaciers. Fractures were formed during cooling and emplacement of the lava flow. Fractures are automatically detected from the 3-D TLS point cloud of an outcrop area of ~3090 m2 using a plane detection algorithm, and calibrated with manual scanlines and high-resolution panoramic photographs. Column-forming fractures dominate the fracture system, are either sub-horizontal or sub-vertical (i.e., sub-parallel or sub-perpendicular to the brecciated margins) without mean strike orientation, and have an exponential length distribution. Sub-horizontal, clustered platy fractures sub-parallel to the flow direction arrest or deflect column-forming fractures. Areal and volumetric fracture intensity analyses reveal a ~0.5 % connected fracture volume which, although seemingly small, promotes fluid flow due to the planarity and connectivity of the system. Autobreccias are partially connected to column-forming fractures, and may promote lateral flow or form barriers depending on the extent of post-cooling alteration and mineralisation. Discrete fracture network models generated with the measured geometrical parameters are in agreement with the observed highly connected fracture system.   Fractures in the andesite-hosted Rotokawa Geothermal Field are described in cores and BHTV logs. Fractures interpreted on BHTV logs are separated into sets of similar orientation using quantifiable clustering algorithms. Fracture thickness and spacing probability distributions are estimated from maximum likelihood estimations applied to truncated distributions, taking sampling biases into consideration. Spacing of the predominant sub-vertical NE-SW-striking fracture set, and subordinate NW-SE-striking fracture set, are best approximated by log-normal distributions and interpreted to be controlled by stratifications within the lava flow sequence. By contrast, spacing of other subordinate fracture sets, either dipping 60° and striking NE-SW, or steeply dipping and striking N-S, are best approximated by power-law distributions and interpreted to be fault-controlled. Fracture thicknesses in both cores and BHTV logs are approximated by a single power-law distribution, which reflects heterogeneous pathways observed at reservoir scale. Previously reported ~5 µm-thick fractures studied in thin section do not follow this power-law distribution and have an isotropic orientation, which suggests a change of controls on fracture density and orientation from thermal stresses at thin-section scale, to tectonic and lithological at core and BHTV log scales. However, fractures occupy ~5 % of the rock mass at the three scales of observations, suggesting a self-similar behaviour of fracture volumes in 3-D.  In contrast to the Ruapehu and Rotokawa reservoir studies, scientific drilling in 2014 of the DFDP-2B borehole offered a unique opportunity to investigate the foliation and fractures along a 630 m-long borehole section in metamorphic rocks in the hangingwall of the Alpine Fault. BHTV log interpretation reveals a constant foliation and foliation-parallel fracture orientation (60°/145°; dip magnitude/dip direction) similar to nearby outcrops and parallel to the regional strike of the Alpine Fault. This foliation orientation may reflect the orientation of the Alpine Fault at ~1 km depth. In addition, sub-vertical fractures striking NW-SE above ~500 m, and sub-horizontal fractures between ~ 500-820 m below ground, are interpreted as exhumation-related joints and inherited hydrofractures respectively. Finally, we recognise metre-thick fault zones similar to those identified from BHTV logs and cores in the nearby DFDP-1B borehole. The three fracture set orientations, and observed fault zones, promote high hydraulic connectivity in the Alpine Fault hangingwall, which fosters fluid flow.  This thesis helps quantify the geometrical parameters of fractures and their associated uncertainties in non-sedimentary settings, which are required to constrain numerical models and unravel fluid flow pathways in heterogeneous rocks. We identified lithological, tectonic and thermal controls on fracture geometries, which can constrain conditions and processes by which these fractures formed, and improve the prediction of fracture system architecture away from sparse borehole observations. The results of this thesis are relevant to similar lithological and tectonic settings elsewhere where observations are scarce. This study has also yielded an essential fracture dataset for better understanding of the structural and hydrological conditions at depth near the Alpine Fault prior to a large earthquake.</p>

2021 ◽  
Author(s):  
◽  
Cécile Massiot

<p>Fluid flow pathways in volcanic and metamorphic rocks are dominantly controlled by fracture systems. Although these fracture systems are critical for developing reservoirs in an economical and sustainable way, and for understanding processes that cause earthquakes, they are often poorly constrained. This thesis studies the geometry of fracture systems, the factors influencing their geometries, and their possible impacts on permeability in three contrasting settings: an outcropping andesite lava flow of the Ruapehu volcano; the andesite-hosted Rotokawa geothermal reservoir; and the Alpine Fault hangingwall metamorphosed schists. We use datasets from a combination of cores, acoustic borehole televiewer (BHTV) logs, outcrop scanlines, and terrestrial laser scanner (TLS) point clouds, which span multiple scales of observation.  Fracture geometries are studied in a young (~6 ka-old) blocky andesitic lava flow on the Ruapehu volcano, as a representative example of weakly-altered andesitic lava flows emplaced over gentle topography in the absence of glaciers. Fractures were formed during cooling and emplacement of the lava flow. Fractures are automatically detected from the 3-D TLS point cloud of an outcrop area of ~3090 m2 using a plane detection algorithm, and calibrated with manual scanlines and high-resolution panoramic photographs. Column-forming fractures dominate the fracture system, are either sub-horizontal or sub-vertical (i.e., sub-parallel or sub-perpendicular to the brecciated margins) without mean strike orientation, and have an exponential length distribution. Sub-horizontal, clustered platy fractures sub-parallel to the flow direction arrest or deflect column-forming fractures. Areal and volumetric fracture intensity analyses reveal a ~0.5 % connected fracture volume which, although seemingly small, promotes fluid flow due to the planarity and connectivity of the system. Autobreccias are partially connected to column-forming fractures, and may promote lateral flow or form barriers depending on the extent of post-cooling alteration and mineralisation. Discrete fracture network models generated with the measured geometrical parameters are in agreement with the observed highly connected fracture system.   Fractures in the andesite-hosted Rotokawa Geothermal Field are described in cores and BHTV logs. Fractures interpreted on BHTV logs are separated into sets of similar orientation using quantifiable clustering algorithms. Fracture thickness and spacing probability distributions are estimated from maximum likelihood estimations applied to truncated distributions, taking sampling biases into consideration. Spacing of the predominant sub-vertical NE-SW-striking fracture set, and subordinate NW-SE-striking fracture set, are best approximated by log-normal distributions and interpreted to be controlled by stratifications within the lava flow sequence. By contrast, spacing of other subordinate fracture sets, either dipping 60° and striking NE-SW, or steeply dipping and striking N-S, are best approximated by power-law distributions and interpreted to be fault-controlled. Fracture thicknesses in both cores and BHTV logs are approximated by a single power-law distribution, which reflects heterogeneous pathways observed at reservoir scale. Previously reported ~5 µm-thick fractures studied in thin section do not follow this power-law distribution and have an isotropic orientation, which suggests a change of controls on fracture density and orientation from thermal stresses at thin-section scale, to tectonic and lithological at core and BHTV log scales. However, fractures occupy ~5 % of the rock mass at the three scales of observations, suggesting a self-similar behaviour of fracture volumes in 3-D.  In contrast to the Ruapehu and Rotokawa reservoir studies, scientific drilling in 2014 of the DFDP-2B borehole offered a unique opportunity to investigate the foliation and fractures along a 630 m-long borehole section in metamorphic rocks in the hangingwall of the Alpine Fault. BHTV log interpretation reveals a constant foliation and foliation-parallel fracture orientation (60°/145°; dip magnitude/dip direction) similar to nearby outcrops and parallel to the regional strike of the Alpine Fault. This foliation orientation may reflect the orientation of the Alpine Fault at ~1 km depth. In addition, sub-vertical fractures striking NW-SE above ~500 m, and sub-horizontal fractures between ~ 500-820 m below ground, are interpreted as exhumation-related joints and inherited hydrofractures respectively. Finally, we recognise metre-thick fault zones similar to those identified from BHTV logs and cores in the nearby DFDP-1B borehole. The three fracture set orientations, and observed fault zones, promote high hydraulic connectivity in the Alpine Fault hangingwall, which fosters fluid flow.  This thesis helps quantify the geometrical parameters of fractures and their associated uncertainties in non-sedimentary settings, which are required to constrain numerical models and unravel fluid flow pathways in heterogeneous rocks. We identified lithological, tectonic and thermal controls on fracture geometries, which can constrain conditions and processes by which these fractures formed, and improve the prediction of fracture system architecture away from sparse borehole observations. The results of this thesis are relevant to similar lithological and tectonic settings elsewhere where observations are scarce. This study has also yielded an essential fracture dataset for better understanding of the structural and hydrological conditions at depth near the Alpine Fault prior to a large earthquake.</p>


2021 ◽  
Author(s):  
C Massiot ◽  
A Nicol ◽  
DD McNamara ◽  
John Townend

©2017. American Geophysical Union. All Rights Reserved. Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9–30 mm observed in BHTV logs, and 1–3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (∼5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ∼5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.


2021 ◽  
Author(s):  
C Massiot ◽  
A Nicol ◽  
DD McNamara ◽  
John Townend

©2017. American Geophysical Union. All Rights Reserved. Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9–30 mm observed in BHTV logs, and 1–3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (∼5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ∼5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.


2013 ◽  
Vol 44 (8) ◽  
pp. 687-702 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir A. Shehzad ◽  
Muhammad Qasim ◽  
F. Alsaadi ◽  
Ahmed Alsaedi

2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
Amira Husni Talib ◽  
Ilyani Abdullah ◽  
Nik Nabilah Nik Mohd Naser

2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


Sign in / Sign up

Export Citation Format

Share Document