scholarly journals WEATHERING THE STORM: THE IMPLICATIONS OF WAVE EXPOSURE ON THE DISTRIBUTION,  PHENOTYPE AND GROWTH OF A TEMPERATE REEF FISH

2021 ◽  
Author(s):  
◽  
Rebeca C. Focht

<p>Disturbance is a fundamental process that affects the structure and dynamics of populations. Wave action is an important agent of disturbance in coastal marine systems, and the frequency and severity of wave-associated disturbances is forecasted to increase with climate change. Understanding the effects of waves on coastal marine ecosystems, and the ability of organisms to adapt to wave action, is of growing importance. This is particularly true for intertidal/shallow subtidal species that are subjected to varying, sometimes intense, wave action. Most studies to-date have focused on species with limited mobility (e.g., algae and invertebrates), and have used estimates of wave dynamics that are not always relevant to the spatial scales of these organisms and their home ranges. My thesis focuses on the common triplefin, Forsterygion lapillum, an abundant benthic marine fish inhabiting shallow subtidal and intertidal rocky reefs throughout New Zealand. I develop and implement a protocol to characterise wave climates on an ecologically relevant scale. I evaluate the effects of waves on abundance, phenotype, performance, and behaviour of a reef fish.  In Chapter 2, I develop and implement a protocol to characterise wave climate at an appropriate scale. The Wellington south coast is exposed to storm waves that develop in the Southern Ocean and propagate up the east coast of New Zealand. I deployed low-cost HOBO acceleration loggers at two depths within each of six locations along the Wellington south coast to record a time series of wave action at twelve sites. Data from my loggers showed substantial spatial and temporal variation in water acceleration due to interactions between waves and local topography. I used a clustering analysis to characterise my 12 sites as either ‘exposed’ or ‘sheltered’. Assignments to these exposure categories did not match with a priori predictions of exposure, suggesting that wave forces experienced by organisms in the shallow subtidal environment may be difficult to assess from surface-based observations of waves. Data were generally well-correlated with an offshore buoy at all sites, and these correlations were stronger for more exposed sites.   In Chapter 3, I explored variation in fish density and phenotype through time and as a function of wave exposure. Densities peaked in summer (corresponding to seasonal recruitment) and declined over winter (consistent with increased losses during high-wave periods), and were generally greater at sheltered locations. While body condition was generally highest for fish sampled from exposed sites (consistent with a density-dependent effect on condition and/or enhancement of foraging with increasing water acceleration), other morphological characteristics did not consistently vary with wave exposure.  In Chapter 4, I used otoliths to reconstruct of growth histories of individuals to further elucidate the influence of wave exposure on triplefin phenotypes. Recent growth was not influenced by wave exposure, but this was confounded by strong seasonal variation in growth rates. Lifetime growth rate also did not differ with wave exposure, and was strongly influenced by hatch date. I used mixed effects models to appropriately account for the potentially confounding effects of other features on growth, and found that daily growth rates were slightly positively correlated with site-specific daily measures of wave action. This result can potentially account for the elevated body condition of fish at exposed sites (Chapter 3), and it has important implications for fish inhabiting wave exposed coasts.   In Chapter 5, I conducted a lab experiment to evaluate feeding ability in relation to simulated wave action. I used fish of a range of sizes, sampled from either a wave-sheltered or a wave-exposed site, and measured their consumption of prey in calm (low flow) conditions, disturbance (high flow) conditions, and immediately following a period of disturbance. Fish consumed fewer prey during disturbance, and more prey during calm conditions (and a similar consumption rate was observed for fish that were assayed after a period of intense wave action). While this pattern held for fish sampled from both populations, fish from wave-exposed sites consumed more prey than fish from sheltered sites, suggesting phenotypic traits (e.g., behavioural or morphological) that shape their feeding efficiency.   Collectively my results suggest that organisms that inhabit wave-exposed coastlines may be intimately linked to wave climate. Waves may have direct effects on numbers (reducing densities via induced mortality) and/or indirect effects on the traits, foraging opportunities, and/or body condition of survivors. Species such as the common triplefin may exhibit plasticity in phenotypic traits that enable them to adapt to dynamic and unpredictable environments. Overall, this thesis provides insight into the ability of an intertidal/shallow subtidal species to cope with variable wave action. Such species may exhibit resilience with increasing wave action due to climate change.</p>

2021 ◽  
Author(s):  
◽  
Rebeca C. Focht

<p>Disturbance is a fundamental process that affects the structure and dynamics of populations. Wave action is an important agent of disturbance in coastal marine systems, and the frequency and severity of wave-associated disturbances is forecasted to increase with climate change. Understanding the effects of waves on coastal marine ecosystems, and the ability of organisms to adapt to wave action, is of growing importance. This is particularly true for intertidal/shallow subtidal species that are subjected to varying, sometimes intense, wave action. Most studies to-date have focused on species with limited mobility (e.g., algae and invertebrates), and have used estimates of wave dynamics that are not always relevant to the spatial scales of these organisms and their home ranges. My thesis focuses on the common triplefin, Forsterygion lapillum, an abundant benthic marine fish inhabiting shallow subtidal and intertidal rocky reefs throughout New Zealand. I develop and implement a protocol to characterise wave climates on an ecologically relevant scale. I evaluate the effects of waves on abundance, phenotype, performance, and behaviour of a reef fish.  In Chapter 2, I develop and implement a protocol to characterise wave climate at an appropriate scale. The Wellington south coast is exposed to storm waves that develop in the Southern Ocean and propagate up the east coast of New Zealand. I deployed low-cost HOBO acceleration loggers at two depths within each of six locations along the Wellington south coast to record a time series of wave action at twelve sites. Data from my loggers showed substantial spatial and temporal variation in water acceleration due to interactions between waves and local topography. I used a clustering analysis to characterise my 12 sites as either ‘exposed’ or ‘sheltered’. Assignments to these exposure categories did not match with a priori predictions of exposure, suggesting that wave forces experienced by organisms in the shallow subtidal environment may be difficult to assess from surface-based observations of waves. Data were generally well-correlated with an offshore buoy at all sites, and these correlations were stronger for more exposed sites.   In Chapter 3, I explored variation in fish density and phenotype through time and as a function of wave exposure. Densities peaked in summer (corresponding to seasonal recruitment) and declined over winter (consistent with increased losses during high-wave periods), and were generally greater at sheltered locations. While body condition was generally highest for fish sampled from exposed sites (consistent with a density-dependent effect on condition and/or enhancement of foraging with increasing water acceleration), other morphological characteristics did not consistently vary with wave exposure.  In Chapter 4, I used otoliths to reconstruct of growth histories of individuals to further elucidate the influence of wave exposure on triplefin phenotypes. Recent growth was not influenced by wave exposure, but this was confounded by strong seasonal variation in growth rates. Lifetime growth rate also did not differ with wave exposure, and was strongly influenced by hatch date. I used mixed effects models to appropriately account for the potentially confounding effects of other features on growth, and found that daily growth rates were slightly positively correlated with site-specific daily measures of wave action. This result can potentially account for the elevated body condition of fish at exposed sites (Chapter 3), and it has important implications for fish inhabiting wave exposed coasts.   In Chapter 5, I conducted a lab experiment to evaluate feeding ability in relation to simulated wave action. I used fish of a range of sizes, sampled from either a wave-sheltered or a wave-exposed site, and measured their consumption of prey in calm (low flow) conditions, disturbance (high flow) conditions, and immediately following a period of disturbance. Fish consumed fewer prey during disturbance, and more prey during calm conditions (and a similar consumption rate was observed for fish that were assayed after a period of intense wave action). While this pattern held for fish sampled from both populations, fish from wave-exposed sites consumed more prey than fish from sheltered sites, suggesting phenotypic traits (e.g., behavioural or morphological) that shape their feeding efficiency.   Collectively my results suggest that organisms that inhabit wave-exposed coastlines may be intimately linked to wave climate. Waves may have direct effects on numbers (reducing densities via induced mortality) and/or indirect effects on the traits, foraging opportunities, and/or body condition of survivors. Species such as the common triplefin may exhibit plasticity in phenotypic traits that enable them to adapt to dynamic and unpredictable environments. Overall, this thesis provides insight into the ability of an intertidal/shallow subtidal species to cope with variable wave action. Such species may exhibit resilience with increasing wave action due to climate change.</p>


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4148
Author(s):  
Estrella Trincado ◽  
Antonio Sánchez-Bayón ◽  
José María Vindel

After the Great Recession of 2008, there was a strong commitment from several international institutions and forums to improve wellbeing economics, with a switch towards satisfaction and sustainability in people–planet–profit relations. The initiative of the European Union is the Green Deal, which is similar to the UN SGD agenda for Horizon 2030. It is the common political economy plan for the Multiannual Financial Framework, 2021–2027. This project intends, at the same time, to stop climate change and to promote the people’s wellness within healthy organizations and smart cities with access to cheap and clean energy. However, there is a risk for the success of this aim: the Jevons paradox. In this paper, we make a thorough revision of the literature on the Jevons Paradox, which implies that energy efficiency leads to higher levels of consumption of energy and to a bigger hazard of climate change and environmental degradation.


Author(s):  
Katarzyna Kubiak-Wójcicka ◽  
Martina Zeleňáková ◽  
Peter Blištan ◽  
Dorota Simonová ◽  
Agnieszka Pilarska

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2020 ◽  
Vol 12 (11) ◽  
pp. 1953-1960
Author(s):  
Andrey A Yurchenko ◽  
Hans Recknagel ◽  
Kathryn R Elmer

Abstract Squamate reptiles exhibit high variation in their phenotypic traits and geographical distributions and are therefore fascinating taxa for evolutionary and ecological research. However, genomic resources are very limited for this group of species, consequently inhibiting research efforts. To address this gap, we assembled a high-quality genome of the common lizard, Zootoca vivipara (Lacertidae), using a combination of high coverage Illumina (shotgun and mate-pair) and PacBio sequencing data, coupled with RNAseq data and genetic linkage map generation. The 1.46-Gb genome assembly has a scaffold N50 of 11.52 Mb with N50 contig size of 220.4 kb and only 2.96% gaps. A BUSCO analysis indicates that 97.7% of the single-copy Tetrapoda orthologs were recovered in the assembly. In total, 19,829 gene models were annotated to the genome using a combination of ab initio and homology-based methods. To improve the chromosome-level assembly, we generated a high-density linkage map from wild-caught families and developed a novel analytical pipeline to accommodate multiple paternity and unknown father genotypes. We successfully anchored and oriented almost 90% of the genome on 19 linkage groups. This annotated and oriented chromosome-level reference genome represents a valuable resource to facilitate evolutionary studies in squamate reptiles.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168992 ◽  
Author(s):  
Alberto Maceda-Veiga ◽  
Andy J. Green ◽  
Robert Poulin ◽  
Clément Lagrue

Author(s):  
Ching-Her Hwang ◽  
Wen-Ching Lee ◽  
Wen-Fang Hsieh ◽  
Ching-Piao Tsai ◽  
Hwa Chien

This study aimed to analyze the statistical characteristics of wave heights, wave energy and wave steepness, in order to investigate the wave climate changes around Taiwan Waters, especially for extreme events of big waves. The operational observation of Taiwan sea waves was initiated by the Central Weather Bureau in 1998; however, due to insufficient data length and low data space coverage, the data are unable to serve as references for long-term wave climate change research. Hence, this study adopted the SWAN (Simulation of Wave in Nearshore) Numerical Wave Hindcasting Method, which is a common method used in many studies, to hindcast the history of a wave field. The re-analysis on wind field data of the last 60 years (1948∼2008), published by the National Centers for Environmental Prediction (NCEP), was employed to make the wind field grid consistent with the hindcast wave field grid. Moreover, the Typhoon Wind Field Grid Down Scaling technique proposed by Winter & Chiou (2007) was applied to interpolate a U10 analysis field that better fits an actual typhoon wind field. The hindcast wave data were compared and validated with directional spectra, which were observed by the meteorological/oceanographic data buoys set up by the Central Weather Bureau and Water Resources Agency since 1997. Longdong, Hualien and Hsinchu Stations were chosen to represent the wave characteristics of sea areas around the island of Taiwan. According to observation data, model parameters were adjusted so that the hindcast results could be closer to observed data in Taiwan sea areas.


2016 ◽  
Author(s):  
Christopher W. Thomas ◽  
A. Brad Murray ◽  
Andrew D. Ashton ◽  
Martin D. Hurst ◽  
Andrew K. A. P. Barkwith ◽  
...  

Abstract. A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the time scales of wave-climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate cusps – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions.


Sign in / Sign up

Export Citation Format

Share Document