scholarly journals The State of Oxidative Metabolism in the Cardiac and Skeletal Muscle Tissue in Conditions of Light Deprivation

2020 ◽  
Vol 5 (5) ◽  
pp. 319-323
Author(s):  
M. Sh. Hilmutdinova ◽  
◽  
L. D. Chebotar ◽  
O. M. Larycheva

The article considers the features of oxidative metabolism of cardiac and skeletal muscle tissue in the changed photoperiod, under the influence of round-the-clock light deprivation in combination with the introduction of exogenous melatonin. Material and methods. The experimental study was performed on male Wistar rats. Two groups were formed for research: intact and experimental. The animals of the intact group were in standard housing and feeding conditions, without changes in light regime. The animals of the experimental group for 30 days were in conditions of round-the-clock light deprivation on the background of the introduction of melatonin at a dose of 1.0 mg/kg body weight. Results and discussion. The level of production of reactive oxygen species was evaluated by the formation of a superoxide anion radical. To assess the prooxidant-antioxidant system in the homogenate of the studied tissues was determined by the concentration of thiobarbituric acid reactive substances. The efficiency of the enzyme link was evaluated by catalase and superoxide dismutase activity. We revealed an increase in the production of superoxide anion radical due to the activity of phagocytes compared to the intact group in the heart muscle under conditions of light deprivation on the background of the introduction of melatonin. In skeletal muscle tissue homogenate the production of superoxide anion radical by the mitochondrial electron transport chain production is likely was reduced compared to the intact group. Light deprivation on the background of exogenous administration of melatonin reduces the intensity of production of reactive oxygen species, which is confirmed by a decrease in the level of superoxide anion radical in the homogenate of the quadriceps femoris muscle tissues of experimental animals. Melatonin as an antioxidant reduces the production of superoxide anion radical by mitochondrial oxidation in the quadriceps femoris muscle. In this case, the excess melatonin stabilizes the fluidity of the membrane, reducing its permeability, which may indicate the protective properties of this substance. Conclusion. Thus, modeling the conditions of excess melatonin modifies the generation of superoxide anion radical from various sources. The above experimental conditions contribute to multidirectional changes in the quantitative generation of the superoxide anion radical in the heart and skeletal muscles. Changes in the indicators of prooxidant-antioxidant status in the homogenate of the studied tissues under the selected experimental conditions were not detected

1998 ◽  
Vol 275 (2) ◽  
pp. E359-E365 ◽  
Author(s):  
Jia-Li Luo ◽  
Folke Hammarqvist ◽  
Kerstin Andersson ◽  
Jan Wernerman

To gain insight into cellular metabolism underlying the glutathione (GSH) alterations induced by surgical trauma, we assessed postoperative skeletal muscle GSH metabolism and its redox status in 10 patients undergoing elective abdominal surgery. Muscle biopsy specimens were taken from the quadriceps femoris muscle before and at 24 and 72 h after surgery. GSH concentrations decreased by 40% at 24 h postoperatively compared with the paired preoperative values ( P < 0.001) and remained low at 72 h ( P < 0.01). The concentration of GSH disulfide (GSSG) did not significantly change throughout the study period, whereas the total GSH (as GSH equivalent) concentration decreased after surgery. Of the GSH constituent amino acids, the concentration of cysteine remained unchanged throughout the study period (from 28.2 ± 10.1 preoperatively to 29.4 ± 13.9 at 24 h postoperatively and to 28.3 ± 15.6 μmol/kg wet wt at 72 h postoperatively). Despite a reduction in glutamate concentration by 40% 24 h after surgery, no correlation was established between GSH and glutamate concentrations postoperatively. Activity of γ-glutamylcysteine synthetase did not change significantly after surgery, whereas GSH synthetase activity decreased postoperatively (from 66.4 ± 19.1 preoperatively to 41.0 ± 10.5 24 h postoperatively, P < 0.01, and to 46.0 ± 11.7 μU/mg protein 72 h postoperatively, P < 0.05). The decrease of GSH was correlated to the reduced GSH synthetase activity seen at 24 h postoperatively. These results indicate that the skeletal muscle GSH pool is diminished in patients after surgical trauma. The depletion of the GSH pool is associated with a decreased activity of GSH synthetase, indicating a decreased GSH synthetic capacity in skeletal muscle tissue.


2015 ◽  
Vol 22 (37) ◽  
pp. 4234-4256 ◽  
Author(s):  
Renan Chiste ◽  
Marisa Freitas ◽  
Adriana Mercadante ◽  
Eduarda Fernandes

Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-575 ◽  
Author(s):  
Bastiaan J. van Nierop ◽  
Anke Stekelenburg ◽  
Sandra Loerakker ◽  
Cees W. Oomens ◽  
Dan Bader ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Vesna Šaponjac ◽  
Dragana Četojević-Simin ◽  
Gordana Ćetković ◽  
Jasna Čanadanović-Brunet ◽  
Sonja Djilas ◽  
...  

AbstractGround spice paprika was extracted with hexane, by conventional Soxhlet procedure (SX oleoresin), and with supercritical carbon dioxide at three different pressures — 20, 30 and 40 MPa (SF20, SF30 and SF40 oleoresins). The effect of extraction method and conditions on the colour intesity of paprika oleoresins, content of α-tocopherol, as well as antioxidant and antiproliferative activity was examined. Hexane showed highest selectivity for paprika pigments (886.02 ASTA), while α-tocopherol showed highest solubility (3846.9 mg kg−1) in supercritical carbon dioxide at 20 MPa. All paprika oleoresins exhibited good superoxide anion radical scavenging activity SF30 being the best superoxide anion radical scavenger. Cell growth activity was evaluated in vitro in human cell lines:cervix epitheloid carcinoma (HeLa), breast adenocarcinoma (MCF7) and colon adenocarcinoma (HT-29). The highest antiproliferative activity was exhibited by SX in MCF7 cell line (IC50=14.28 mg mL−1). Extract SF40 produced significant and selective antiproliferative action towards HeLa cell line. These results suggest that paprika oleoresins, due to high antiradical and tumor cell-inhibiting activity, can be regarded as functional food ingredients.


Sign in / Sign up

Export Citation Format

Share Document