scholarly journals Semantic and Structural Image Segmentation for Prosthetic Vision

Author(s):  
Melani Sanchez Garcia ◽  
Rubén Martínez Cantín ◽  
José J. Guerrero

We present a new approach to build a schematic representation of indoor environments for phosphene images. The proposed method combines a variety of convolutional neural networks for extracting and conveying relevant information about the scene such as structural informative edges of the environment and silhouettes of segmented objects. Experiments were conducted with normal sighted subjects with a Simulated Prosthetic Vision system.

2021 ◽  
Vol 147 ◽  
pp. 115-123
Author(s):  
Yinyin Jiang ◽  
Ming Li ◽  
Peng Zhang ◽  
Xiaofeng Tan ◽  
Wanying Song

2021 ◽  
Vol 11 (4) ◽  
pp. 1581
Author(s):  
Jimy Oblitas ◽  
Jezreel Mejia ◽  
Miguel De-la-Torre ◽  
Himer Avila-George ◽  
Lucía Seguí Gil ◽  
...  

Although knowledge of the microstructure of food of vegetal origin helps us to understand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction of learning models that represent the actual microstructures of the tissue is important to extract relevant information and advance in the comprehension of such behavior. Consequently, the objective of this research is to compare two machine learning techniques—Convolutional Neural Networks (CNN) and Radial Basis Neural Networks (RBNN)—when used to enhance its microstructural analysis. Two main contributions can be highlighted from this research. First, a method is proposed to automatically analyze the microstructural elements of vegetal tissue; and second, a comparison was conducted to select a classifier to discriminate between tissue structures. For the comparison, a database of microstructural elements images was obtained from pumpkin (Cucurbita pepo L.) micrographs. Two classifiers were implemented using CNN and RBNN, and statistical performance metrics were computed using a 5-fold cross-validation scheme. This process was repeated one hundred times with a random selection of images in each repetition. The comparison showed that the classifiers based on CNN produced a better fit, obtaining F1–score average of 89.42% in front of 83.83% for RBNN. In this study, the performance of classifiers based on CNN was significantly higher compared to those based on RBNN in the discrimination of microstructural elements of vegetable foods.


2018 ◽  
Vol 5 (5) ◽  
pp. 939-945 ◽  
Author(s):  
Grace X. Gu ◽  
Chun-Teh Chen ◽  
Deon J. Richmond ◽  
Markus J. Buehler

A new approach to design hierarchical materials using convolutional neural networks is proposed and validated through additive manufacturing and testing.


Author(s):  
Ugur Erkan ◽  
Dang Ngoc Hoang Thanh ◽  
Le Thi Thanh ◽  
V.B. Surya Prasath ◽  
Aditya Khamparia

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Sanxing Zhang ◽  
Zhenhuan Ma ◽  
Gang Zhang ◽  
Tao Lei ◽  
Rui Zhang ◽  
...  

Semantic image segmentation, as one of the most popular tasks in computer vision, has been widely used in autonomous driving, robotics and other fields. Currently, deep convolutional neural networks (DCNNs) are driving major advances in semantic segmentation due to their powerful feature representation. However, DCNNs extract high-level feature representations by strided convolution, which makes it impossible to segment foreground objects precisely, especially when locating object boundaries. This paper presents a novel semantic segmentation algorithm with DeepLab v3+ and super-pixel segmentation algorithm-quick shift. DeepLab v3+ is employed to generate a class-indexed score map for the input image. Quick shift is applied to segment the input image into superpixels. Outputs of them are then fed into a class voting module to refine the semantic segmentation results. Extensive experiments on proposed semantic image segmentation are performed over PASCAL VOC 2012 dataset, and results that the proposed method can provide a more efficient solution.


Sign in / Sign up

Export Citation Format

Share Document