scholarly journals NUMERICAL INVESTIGATING OF THE MICROGRID OPTIMAL HYBRID CONFIGURATION AT VILLAGE BAKHAR JAMALI

Author(s):  
Arshad Hussain Jamali

Alternate energy sources such as hybrid renewable energy off-grid systems are under the focus of researchers to improve their reliability and feasibility for rural areas. A hybrid power system uses a combination of renewable as primary and fuel-based power systems as a backup. Reliability, affordability, and cost depend upon the number of power systems used and the efficiency of these systems. However, the hybrid system is facing different challenges such as high cost, fluctuations in power, and proper infrastructure. This study aimed to determine the best configuration for village Bakhar Jamali, having a total of 162 houses and a 380 kW peak load. This study has been carried out using HOMER Pros to check the different sets of hybrid configurations. To find optimal power different sets of schemes were carried out. It was concluded in this study that the combination of Wind turbine, Solar PV, Biogas Generator, Diesel generator, Battery, and Converter give the optimum hybrid system with the following rated capacity, 150 kW of Solar PV, Specification of 3 kW of 50 Wind Turbine, Auto size Diesel Generator of 420 kW, Biogas Generator of 150 kW, Number of Batteries of 1 kWh 3832 and Converter capacity of 470 kW.

Author(s):  
Amara Mohamed ◽  
Zablah Abdelkader ◽  
Bouanane Abdelkrim

The absence of electricity in rural areas is one of the major challenges faced by many developing countries like Algeria. This work has been devoted to the design of an off-grid renewable hybrid power system for a rural village in the region of Tindouf located in south Algeria. The main objective of this study is to determine the optimum size of the hybrid power system able to fulfill the requirements of 709 kWh/day primary load with 66 kW peak load for a remote area of 230 households. This study is based on simulation and optimization of a (PV-Diesel) and (PV-GPL) hybrid system with a technical-economic analysis. Simulation results showed that electrifying using a PV/GPL generator hybrid system is more advantageous when compared to the PV/diesel generator hybrid system as it has lower operating costs and emissions. The comparison is based on per unit cost of electrical energy production, operating cost of conventional fossil fuel-based energy sources and pollutants gases reduction.


2018 ◽  
Vol 164 ◽  
pp. 01038
Author(s):  
Ridho Hantoro ◽  
Cahyun Budiono ◽  
Ronald Kipkoech Ketter ◽  
Nyoman Ade Satwika

Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.


2018 ◽  
Vol 42 (5) ◽  
pp. 411-435 ◽  
Author(s):  
Sergey N Udalov ◽  
Andrey A Achitaev ◽  
Alexander G Pristup ◽  
Boris M Bochenkov ◽  
Yuri Pankratz ◽  
...  

The paper is devoted to investigations of dynamic processes in a local power system consisting of wind turbines with a magnetic continuously variable transmission. Due to low inertia of wind turbine generator rotors, there is a problem of ensuring dynamic stability at sharp load changes or at short circuits in an autonomous power system. To increase dynamic stability of the system, two algorithms for controlling a magnetic continuously variable transmission are presented. The first algorithm stabilizes a rotation speed of the high-speed rotor of a magnetic continuously variable transmission from the generator side in a local power system consisting of wind turbines with uniform synchronous generators with permanent magnets having equal moments of inertia. Undoubtedly, local power systems having only the wind turbines with equal mechanical inertia time constants are not widely used due to stochastic nature of wind energy. Therefore, wind power systems are combined with a diesel generator or a gas-turbine unit. Investigations show that the use of the only speed stabilization algorithm is not enough for such power systems, because there is a possibility for occurrence of asynchronous operation under specific power changes due to the difference in moments of inertia of generator rotors. Thus, the second algorithm uses the phase shift compensation in accordance with a primary generator in an autonomous power system consisting of non-uniform generators having different mechanical inertia time constants. As a primary generator, a diesel generator or a gas-turbine unit having a primary speed controller may be used. It should be noted that algorithms of stabilization for speed and phase angle are extended by an inertial circuit of aerodynamic compensation for torque of rotation from the wind turbine side to reduce loading on an energy storage unit of the magnetic continuously variable transmission at disturbances from the generator side and the turbine side.


2020 ◽  
Vol 12 (9) ◽  
pp. 3808
Author(s):  
Solomon Kiros ◽  
Baseem Khan ◽  
Sanjeevikumar Padmanaban ◽  
Hassan Haes Alhelou ◽  
Zbigniew Leonowicz ◽  
...  

Despite the tremendous efforts exhibited by various utilities around the world during the past few years, there are still exceedingly many remote regions unreached by the electrical grid. For those regions, the enormous available potential of renewable energy resources is believed to be useful for the development of a stand-alone power supply system. This paper presents the modeling of a stand-alone hybrid system for the remote area of Ethiopia. A comparison of the economic performance of various scenarios of a stand-alone photovoltaic (PV)-wind hybrid system, with battery storage and diesel as a backup for electrifying remote rural areas, is presented. Therefore, a practical example, Kutur village of Awlio kebele of the Axum district, Ethiopia (which is 30 km away from the closest national grid) is considered for this research. Two electric load scenarios are estimated by considering the set of incandescent and efficient lamps for lighting for the 120 existing households. The above-mentioned solar radiation and wind speed are then used as an input to simulate the hybrid set-up for the high and low load estimation using HOMER software. The simulation result shows that the net present costs (NPC) corresponding to the high and low load scenarios is $262,470 and $180,731, respectively. Besides, an essential load forecasting is performed to see the effect of the increase in electric demand of the community on the required investment to install a stand-alone hybrid set-up. The NPC after load forecasting is found to be more than three folds of the NPC required for the reference year. In both cases, the simulation results indicate that using a stand-alone PV-wind hybrid system with battery storage and a diesel generator as a backup for electrifying Kutur village is cost-effective and comparable against the cost required for electrifying the village by extending the grid.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050290
Author(s):  
Karan Sood ◽  
Eswaramoorthy Muthusamy

Hybrid Renewable Energy Systems (HRESs) are noteworthy devices for enhancement of reliability and performance compared to standalone systems, which are in a combination of more than one energy conversion system in a single unit. The recent developments in materials and technologies of HRESs are cost-effective and are more suitable power options for isolated rural areas. Many researchers have reported to have enhanced the performance of HRESs across India. Hence, this paper presents a comprehensive review of various HRESs that have been reported for their performance evaluation with respect to economic distance limit, techno-economic sensitivity, and optimum analysis. Also, different hybrid combinations are compared based on the factor of Net Present Cost (NPC), Cost of Energy (COE), renewable fraction, maximum renewable penetration, operational cost, and/or emission. Some case studies on various combinations of HRES for telecommunication application, rural electrification and water distillation are discussed and compared. It is concluded from the comprehensive review that there is scope for further studies on hybrid system across the country with adoption of different and newer combinations, materials and thermodynamic approaches. This paper will be helpful to researchers and scientists in understanding the state-of-the-art technologies in the hybrid system.


2014 ◽  
Vol 2 ◽  
pp. 15-23
Author(s):  
Puskar Suwal

The techno-economic viability of a hybrid system of solar photovoltaic and diesel generator with the most likely stand-alone systems, i.e. diesel-powered system and solar photovoltaic system, has been analyzed for energy demand through optimization and sensitivity analysis using HOMER. The concept of hybridizing is that the base load is to be covered by largest and firmly available renewable energy source(s), and other intermittent source(s) should augment the base load to cover the peak load. The model has been designed to provide an optimal system configuration based on hour-by-hour data for energy availability and demands. Based on the simulation results, the hybrid system is found to be economically feasible enough to replace the stand-alone system currently practicing to fulfill the energy demand during power cut-off in Nepal.


Sign in / Sign up

Export Citation Format

Share Document