scholarly journals Colposcopy for diagnosis of premalignant and malignant cervical lesions

2021 ◽  
Vol 143 (11-12) ◽  
Keyword(s):  
2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Akouélé P. Kuassi-Kpede ◽  
Essolakina Dolou ◽  
Théodora M. Zohoncon ◽  
Ina Marie Angèle Traore ◽  
Gnatoulma Katawa ◽  
...  

Abstract Background The causative agent of cervical cancer referred to as Human papillomavirus (HPV) remains a real public health problem. Many countries in West Africa, such as Togo have no data on the high-risk HPV (HR-HPV) infection and genotypes distribution. In order to fill the knowledge gap in the field in Togo, the main objective of this study was to determine the prevalence of pre-cancerous lesions of the cervix and HR-HPV genotypes among Togolese women. Methods Samples were collected from 240 women by introducing a swab in the cervix. Then, the screening of precancerous cervical lesions using the visual inspection with acetic acid and lugol (VIA / VIL) was conducted. The HR-HPV genotypes were characterised by real-time multiplex PCR. Results Out of 240 women recruited, 128 (53.3%) were infected by HR-HPV. The most common genotypes were HPV 56 (22.7%), followed by HPV 51 (20.3%), HPV 31 (19.5%), HPV 52 (18.8%) and HPV 35 (17.2%). The least common genotypes were HPV 33 (2.3%) and HPV 16 (2.3%). Among the women, 1.3% (3/240) were positive to VIA/VIL. Conclusion This study allowed HR-HPV genotypes to be characterised for the first time in Lomé, Togo. This will help in mapping the HR-HPV genotypes in West Africa.


2021 ◽  
pp. 002203452110181
Author(s):  
A.A. Balhaddad ◽  
I.M. Garcia ◽  
L. Mokeem ◽  
M.S. Ibrahim ◽  
F.M. Collares ◽  
...  

Cervical composites treating root carious and noncarious cervical lesions usually extend subgingivally. The subgingival margins of composites present poor plaque control, enhanced biofilm accumulation, and cause gingival irritation. A potential material to restore such lesions should combine agents that interfere with bacterial biofilm development and respond to acidic conditions. Here, we explore the use of new bioresponsive bifunctional dental composites against mature microcosm biofilms derived from subgingival plaque samples. The designed formulations contain 2 bioactive agents: dimethylaminohexadecyl methacrylate (DMAHDM) at 3 to 5 wt.% and 20 wt.% nanosized amorphous calcium phosphate (NACP) in a base resin. Composites with no DMAHDM and NACP were used as controls. The newly formulated 5% DMAHDM–20% NACP composite was analyzed by micro-Raman spectroscopy and transmission electron microscopy. The wettability and surface-free energy were also assessed. The inhibitory effect on the in vitro biofilm growth and the 16S rRNA gene sequencing of survival bacterial colonies derived from the composites were analyzed. Whole-biofilm metabolic activity, polysaccharide production, and live/dead images of the biofilm grown over the composites complement the microbiological assays. Overall, the designed formulations had higher contact angles with water and lower surface-free energy compared to the commercial control. The DMAHDM-NACP composites significantly inhibited the growth of total microorganisms, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum by 3 to 5-log ( P < 0.001). For the colony isolates from control composites, the composition was typically dominated by the genera Veillonella, Fusobacterium, Streptococcus, Eikenella, and Leptotrichia, while Fusobacterium and Veillonella dominated the 5% DMAHDM–20% NACP composites. The DMAHDM-NACP composites contributed to over 80% of reduction in metabolic and polysaccharide activity. The suppression effect on plaque biofilms suggested that DMAHDM-NACP composites might be used as a bioactive material for cervical restorations. These results may propose an exciting path to prevent biofilm growth and improve dental composite restorations’ life span.


Apmis ◽  
2021 ◽  
Author(s):  
Rodolfo Ocadiz‐Delgado ◽  
Nicolás Serafin‐Higuera ◽  
Elizabeth Alvarez‐Rios ◽  
Enrique García‐Villa ◽  
Manuel Tinajero‐Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document