scholarly journals Validation of analytical methodology for determination of Personal Care Products in environmental matrix by GC-MSMS

2018 ◽  
Vol 43 (3) ◽  
pp. 30
Author(s):  
Tais Cristina Filippe ◽  
Franciane De Almeida Brehm Goulart ◽  
Alinne Mizukawa ◽  
Júlio César Rodrigues de Azevedo

The presence of personal care products in the environment is recent and relatively few researches work with the quantification of this class of emerging contaminants in Brazil. However, a wide variety of these products is continuously released into the aquatic environment. The growing interest in these substances occurs mainly because they exhibit biological activity in very low concentrations, which gives great environmental relevance. The difficulty of detecting and quantifying such contaminants in the environment encourages the development and validation of appropriate analytical methods for this purpose. Therefore, the present study aims to validate a methodology and verify its efficiency in the determination of six personal care products, among them parabens and triclosan. The samples were submitted to the solid phase extraction process and were later analyzed by gas chromatography coupled with mass spectrometry for the determination of personal care products. The validation of the methodology used was based on the standards established by the National Health Surveillance Agency. The extraction and quantification method were efficient for the determination of these analytes in water samples.

Author(s):  
Magali Kemmerich

Emerging contaminants (ECs), which constitute a group of chemicals, such as personal care products, food additives, and endocrine disruptors, are not commonly monitored and have the potential to cause adverse effects on the environment and humans. In water, even at low concentrations, they pose risks to environmental health. Several technologies have been developed to determine these compounds; the most common ones are liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive liquid-liquid microextraction (DLLME) with analysis by gas and liquid chromatography (GC and LC) coupled to mass spectrometry (MS). This chapter analyzes these methodologies and highlights their possibilities and limitations and compiles the most recent advances in this field.


2018 ◽  
Vol 37 (2) ◽  
Author(s):  
Omar J. Portillo-Castillo ◽  
Rocío Castro-Ríos ◽  
Abelardo Chávez-Montes ◽  
Azucena González-Horta ◽  
Norma Cavazos-Rocha ◽  
...  

Abstract Solid-phase microextraction (SPME) is a sample preparation technique with many applications that is being continuously developed. In this technique, the type of fiber coating plays a crucial role for extraction efficiency. Currently available commercial coatings have certain drawbacks that have been overcome by the development of new coatings based on novel materials; these have improved the efficiency of extraction, selectivity and stability of commercial coatings. Pharmaceutical and personal care products (PPCPs) are one of the most important groups of emerging contaminants; however, some studies suggest that these compounds can cause adverse health effects. No official monitoring protocols for these compounds are currently available, so the establishment of analytical methods that allow their determination in environmental samples is required. The complexity of environmental samples together with the low concentration levels of these compounds makes necessary the use of sample preparation techniques capable of removing interferences, as well as preconcentrated analytes, and SPME is a very promising alternative to achieve this. This review describes the recent developments in SPME with classical and novel coatings and its applications for PPCP determination in environmental samples.


2014 ◽  
Vol 6 (19) ◽  
pp. 7978-7983 ◽  
Author(s):  
Zixing Zhang ◽  
Dandan Zhang ◽  
Xian Zhang

This article reports a sensitive and reliable solid-phase extraction coupling capillary zone electrophoresis with head-column field-amplified sample stacking method for trace determination of nineteen pharmaceutical and personal care products in wastewater.


Sign in / Sign up

Export Citation Format

Share Document